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a b s t r a c t

The two-dimensional time-dependentNavier–Stokes equationswith nonlinear slip bound-
ary conditions are investigated in this paper. Since the nonlinear slip boundary conditions
of this type include the subdifferential property, the weak variational formulation is the
variational inequality. The existence, uniqueness and regularity of global weak solutions
are shown using the regularized method. Moreover, the continuous dependence property
of the weak solution for given initial data and the behavior of the global weak solution as
t −→ +∞ are established.
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1. Introduction

It is well known that the mathematical model of viscous incompressible fluid is given by the Navier–Stokes equations,
which can be written as

∂u
∂t

− µ∆u + (u · ∇)u + ∇p = f in QT ,

div u = 0 in QT

(1)

where QT = (0, T ) × Ω , 0 < T ≤ +∞, Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω composed of two
components Γ and S satisfying Γ ∩ S = ∅, |Γ | ≠ 0, |S| ≠ 0 and Γ ∪ S = ∂Ω . u(t, x) and f (t, x) are vector functions
and denote the flow velocity and the external force, respectively. p(t, x) is a scalar function and denotes the pressure. The
viscous coefficient µ > 0 is a positive constant. The solenoidal condition means that the fluid is incompressible.

To deal with (1), the proper boundary conditionsmust be attached.We know that different boundary conditions describe
different physical phenomena. Fujita in [1] investigated some hydrodynamics problems under some nonlinear boundary
conditions, such as leak and slip boundaries including the subdifferential property. Boundary conditions of this type appear
in the modeling of blood flow in a vein of an arterial sclerosis patient and in the modeling of avalanches of water and rocks.

In this paper, we will consider the following initial–boundary value conditions:u(0) = u0 inΩ,
u = 0 on Γ × (0, T ],
un = 0,−στ (u) ∈ g∂|uτ | on S × (0, T ],

(2)
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where u(0) denotes the initial value of u(t) at t = 0, and g is a scalar function; un = u · n and uτ = u − unn are the normal
and tangential components of the velocity, where n stands for the unit vector of the external normal to S; στ (u) = σ − σnn,
independent of p, is the tangential component of the stress vector σ which is defined by σi = σi(u, p) = (µeij(u)− pδij)nj,
where eij(u) =

∂ui
∂xj

+
∂uj
∂xi
, i, j = 1, 2. The set ∂ψ(a) denotes a subdifferential of the functionψ at the point a, whose definition

will be given in Section 2.
There are some theoretical results concerning viscous incompressible flow with nonlinear subdifferential boundary

conditions. Fujita in [2] showed the existence and uniqueness of weak solutions to the Stokes problem with slip or leak
boundary conditions. Subsequently, Saito in [3] showed the regularity of these weak solutions by Yosida’s regularized
method and the finite difference quotients method. Fujita obtained in [4,5], in terms of nonlinear semigroup theory, the
well-posedness of the initial–boundary value Stokes problem with leak boundary conditions. Other results concerning the
Stokes problems can be found in [6,7]. For three-dimensional steadyNavier–Stokes equations, Chebotarev in [8] obtained the
existence ofweak solutions via a limited tangential component of velocity. For three-dimensional time-dependent nonlinear
Navier–Stokes equations, Konovalova in [9] proved the weak solvability under the assumption that

|((u · ∇)u, v)| ≤ c∥u∥1+θ
∥∇u∥1−θ

∥v∥,

where c > 0 is a constant and θ ∈ (0, 1). Furthermore, the solution is regular if

|((u · ∇)u, v)| ≤ c∥u∥1+θ
∥∇u∥1−θ

∥∇v∥γ ∥v∥1−γ ,

where θ, γ ∈ (0, 1/2), and ∥·∥denotes the norm in L2(Ω). Other results concerningNavier–Stokes equationswith nonlinear
subdifferential boundary conditions can be found in [10,11]. We remark that the steady homogeneous and inhomogeneous
Stokes system with linear slip boundary conditions without a subdifferential property have recently been studied by Veiga
in [12–14].

In this paper,wewill dealwith the two-dimensionalNavier–Stokes equations (1)with nonlinear slip boundary conditions
(2). Since nonlinear slip boundary conditions of this type include the subdifferential property, the weak variational
formulation is the variational inequality problem. It is well known that the regularizedmethod plays a key role in theoretical
analysis and numerical analysis of the variational inequality problem because it reduces the inequality to the equation.
Then many tools can be used to deal with the variational equation. Here, we use the regularized method to deal with
the variational inequality problem. First, we obtain the regularized problem whose weak formulation is the variational
equation. Subsequently, we show the existence and regularity of global weak solutions to the regularized problem by the
Faedo–Galerkin method, and obtain the existence and regularity of weak solutions to the variational inequality problem
as ε −→ 0. Finally, we establish the continuous dependence property of the weak solution for given initial data and the
behavior of the global weak solution as t −→ +∞. We will show that the global weak solution converges to the weak
solution of the corresponding steady Navier–Stokes equations as t −→ +∞. Thus, these results derived in this paper are
similar to the well-posedness properties of the two-dimensional Navier–Stokes equations with complete homogeneous
Dirichlet boundary conditions [15].

This paper is organized as follows. In thenext section,wewill define some spaces usedusually anddescribe thedefinitions
of the weak solution and the strong solution via a variational inequality. Moreover, the associated regularized problem
is given. In Section 3, we will study the steady Stokes problem with nonlinear subdifferential boundary conditions and
introduce the Stokes operator A. The existence, uniqueness and regularity of weak solutions to the variational inequality are
shown by the regularized method in Section 4. The continuous dependence property of the weak solution for given initial
data and the behavior of the global weak solution as t −→ +∞ are established in the last two sections.

2. Navier–Stokes equations with nonlinear slip boundary conditions

First, we give the definition of the subdifferential property (e.g. [16]). Letψ:R2
→ R = (−∞,+∞] be a given function

possessing the properties of convexity andweak semi-continuity from below (ψ is not identical to+∞). The subdifferential
set ∂ψ(a) denotes a subdifferential of the function ψ at the point a:

∂ψ(a) = {b ∈ R2
| ψ(h)− ψ(a) ≥ b · (h − a),∀h ∈ R2

}.

We introduce some spaces which are usually used in this paper. Define

V = {u ∈ H1(Ω)2, u|Γ = 0, u · n|S = 0}, Vσ = {u ∈ V , div u = 0},

H = {u ∈ L2(Ω)2, div u = 0, u · n|∂Ω = 0}, L20(Ω) =


q ∈ L2(Ω),


Ω

qdx = 0

.

Let ∥ · ∥k be the norm in Hilbert space Hk(Ω)2. Let (·, ·) and ∥ · ∥ be the inner product and the norm in L2(Ω)2. Then we can
equip V with the norm ∥v∥V = ∥∇v∥ for all v ∈ V because ∥∇v∥ is equivalent to ∥v∥1 in view of the Poincaré inequality.
Let V ′ be the dual space of V and ⟨·, ·⟩ be the dual pairing in V × V ′.

If X is a Banach space, Lp(0, T ; X), 1 ≤ p < +∞, is the linear space of measurable functions from the interval [0, T ] into
X such that

 T
0 ∥u(t)∥p

Xdt < ∞. If p = +∞, we require that supt∈[0,T ] ∥u(t)∥X < ∞.
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