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a b s t r a c t

In this paper, we first gave the parallel timelike ruled surface with a timelike ruling and its
geometric invariants in terms of themain surface.We then obtained the integral invariants
which are the pitch and the dual angle of pitch of the parallel timelike ruled surface with
a timelike ruling and also the relations among them and integral invariants of the main
surface.
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1. Introduction

Ruled surfaces have been widely applied in designing cars, ships, manufacturing of products and many other areas
such as motion analysis and simulation of rigid body and model-based object recognition systems. Modern surface
modeling systems include ruled surfaces. The geometry of ruled surfaces is essential for studying kinematical and positional
mechanisms in R3.

Dual numbers were introduced by Clifford as a tool for his geometrical investigations [1]. After him, Study used dual
numbers and dual vectors in his research on the geometry of lines and kinematics [2]. In 1951, Müller used the real pitch
Lv1 and the real pitch angle λv1 which are two real integral invariants in a study where he generalized the rigid body
to v1-closed ruled surface with the help of oriented v1-line [3]. Skreiner in 1966 studied the geometry and kinematics of
instantaneous spatial motion, using new geometric explanations he gave some theorems and results for the invariants of a
closed ruled surface generated by an oriented line of amoving rigid body inR3 [4]. In 1972, Hacısalihoğlu generalized Steiner
and Holditch theorems for the plane and the sphere to the line space in a paper about the pitch of a closed ruled surface [5].
Gürsoy presented some papers in 1990. In the paper titled ‘‘the dual angle of pitch of a closed ruled surface’’, he introduced
a new dual integral invariant and generalized Holditch and Steiner theorems in the plane kinematics to the line space [6,7].
Later in another study he showed that the dual angle of pitch as the dual integral invariant of a closed ruled surface,
corresponds to the dual spherical area described by the dual spherical indicatrix of the closed ruled surface. In 1994, Yapar
found some relations among the integral invariants of the closed ruled surfaces which correspond to the dual closed curves
in a dual closed strip [8]. In 1994, Güneş and Keleş examined the relation between the Steiner vector of a one-parameter
closed spherical motion and the area vector of the closed spherical curve generated under the motion [9]. Then using the
area formula given by Blaschke and the area vector defined byMüller, they obtained the formula given by Hacısalihoğlu in a
different way [5]. Köse gave the pitch and the angle of pitch of the closed ruled surface in terms of the integral invariants of
the dual spherical closed curve which corresponds to the closed ruled surface in 1997 [10]. Schaaf and Ravani in their paper
(1998) developed a theory for higher order continuity of ruled surfaces constructed from ruled surface patches using dual
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curvature and torsion concepts [11]. In 1999, Gürsoy and Küçük gave some results on the geometric invariants, the pitch
and the angle of pitch, of the closed trajectory ruled surfaces for spatial motions [12].

In recent times, ruled surfaces in Lorentz space have been studied (cf. [13–16]). Nizamoğlu studied parallel ruled surfaces
in Euclidean space where he considers them as one-parameter dual curves on the dual unit sphere [17]. Uğurlu and Çalışkan
proved that one-(real)parameter motions on the dual Lorentzian sphere and dual hyperbolic sphere correspond uniquely to
spacelike and timelike ruled surfaces in three dimensional Lorentz space, respectively [18]. Özyılmaz and Yaylı examined
the closed dual sphericalmotions onD3

1 in 2001 [14]. They gave the dual angle of pitch and real integral invariants of a closed
timelike ruled surface. Then they obtained some relations between thedual Steiner vector of the closeddual sphericalmotion
and the dual angle of pitch of the closed timelike ruled surfaces. In 1999, Şenyurt [19] obtained characteristic properties of
the parallel ruled surfaces using the definition of parallel ruled surfaces corresponding to unit dual spherical parallel curves
obtained with the help of dual angles given by Blaschke in 1930 [20]. In 2008, Çöken et al. wrote a paper on parallel timelike
ruled surfaces with timelike rulings. They compared geometric invariants of the two parallel ruled surfaces. Considering
the case that striction curves are null curves, they obtained the geodesic curvature, the normal curvature and the geodesic
torsion of the curve [13].

In this paper, we first calculate pitch length and dual pitch angle of parallel timelike ruled surfaces with timelike ruling
corresponding to dual unit Lorentzian spherical parallel timelike curves in lines space. Then, we find the relations among
them and integral invariants of the main surface.

2. Preliminaries

For clarity and notation we recall some fundamental concepts of the subject.

Definition 1. A linear combination a + εā, where a and ā are some real numbers and ε2
= 0, is called a dual number.

The set of dual numbers, denoted by D, is an associative ring with the unit element 1.

Definition 2. A dual vector is a triple of dual numbers and hence if A⃗ is a dual vector, we may write A⃗ = a⃗ + ε⃗̄a, where
a⃗, ⃗̄a ∈ R3 and ε is the dual unit as introduced above.

Henceforth, we will omit the arrows.

Definition 3. The set of all dual vectors is called the dual space and denoted by D3.

The dual inner-product may be imposed in a Lorentzian structure by

⟨A, B⟩ = ⟨a, b⟩ + ε(⟨a, b̄⟩ + ⟨ā, b⟩), (1)

where A = a+εā and B = b+εb̄ are some dual vectors and ⟨, ⟩ is a Lorentzmetric of signature (ε1, ε2, ε3) = (−1, +1, +1).
Then (D3, ⟨, ⟩) is denoted by D3

1. The causal character (cf. [17, p. 56]) of a dual vector A = a + εā is defined by the causal
character of its real part a, namely, A is spacelike, timelike or null if ⟨a, a⟩ is positive, negative or zero, respectively.

Definition 4. The Lorentzian cross-product on D3
1 is defined by

A ∧ B = a ∧ b + ε(a ∧ b̄ + ā ∧ b), (2)

where ∧ stands for the Lorentzian cross-product in R3 given by

a ∧ b =

3
i=1

εi det(ei, a, b)ei. (3)

For detailed information on the Lorentzian cross-product on D3
1, see [18].

3. Timelike ruled surfaces with timelike rulings

Uğurlu and Çalışkan [18] showed that a timelike (resp. spacelike) dual unit speed curve, depending on a real parameter
in D3

1 represents uniquely a directed timelike (resp. spacelike) line in R3
1. Veldkamp [21] and Study [2] use the term ‘‘dual

point’’ to express a point of a dual curve. If every r1(t) and r̄1(t) real valued functions are differentiable, the dual curve

R1 : I −→ D3
1

t −→ R1(t) = r1(t) + εr̄1(t)
(4)

in D3
1 is differentiable. By using the dual vector representation, the Plücker vectors r1 and p × r1 of a timelike line L can be

collected into a single dual timelike vector R1 = r1 + εr̄1, where r1 is the direction vector of L and p is the position vector of
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