
The Journal of Systems and Software 85 (2012) 2479– 2493

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

JCSI: A tool for checking secure information flow in Java Card applications

Marco Avvenutia, Cinzia Bernardeschia,∗, Nicoletta De Francescoa, Paolo Mascib

a Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
b School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS London, United Kingdom

a r t i c l e i n f o

Article history:
Received 3 May 2011
Received in revised form 30 April 2012
Accepted 17 May 2012
Available online 26 May 2012

Keywords:
Java card
Java bytecode
CAP file
Secure information flow
Abstract interpretation

a b s t r a c t

This paper describes a tool for checking secure information flow in Java Card applications. The tool per-
forms a static analysis of Java Card CAP files and includes a CAP viewer. The analysis is based on the theory
of abstract interpretation and on a multi-level security policy assignment. Actual values of variables are
abstracted into security levels, and bytecode instructions are executed over an abstract domain. The tool
can be used for discovering security issues due to explicit or implicit information flows and for checking
security properties of Java Card applications downloaded from untrusted sources.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Java Cards are pocket-size cards equipped with an embed-
ded micro-controller that supports the execution of a Java Virtual
Machine (Chen, 2000). They are typically used in credit and loyalty
systems, electronic cash, health-care and e-government.

A Java Card application consists of a set of applets bundled
into a package. In multi-applicative Java Cards, new applications
can be installed after card issuance. In order to enforce security
and protection, applications are executed within protected spaces,
called contexts. Each application is associated with a unique con-
text. A component of the Java Card system, denominated firewall,
uses an access control mechanism to enforce security policies. The
basic rules enforced by the firewall are: (i) each applet can access
only objects belonging to the context of the applet; (ii) informa-
tion exchange between applets belonging to different contexts can
be performed only through specific shared objects, denominated
shareable interfaces. Applications providing shared resources are
supported by the Java Card system with mechanisms suitable to
customize the access policy. For instance, limited inspection of the
call stack for checking the identity of the application willing to use
the shared resource.

∗ Corresponding author: Tel.: +39 050 2217541; fax: +39 050 2217600.
E-mail addresses: m.avvenuti@ing.unipi.it (M. Avvenuti),

cinzia.bernardeschi@ing.unipi.it (C. Bernardeschi),
nicoletta.defrancesco@ing.unipi.it (N. De Francesco),
paolo.masci@eecs.qmul.ac.uk (P. Masci).

Although powerful, access control mechanisms are not suf-
ficient to avoid unauthorized disclosure of information (Smith,
2007). The Electronic Purse case study (Cazin et al., 2000) is a well-
known example that shows how a Java Card application can exploit
information propagation for overriding access control policies.

In this work, we present a tool, denominated Java Card Secure
Information (JCSI), for analyzing information flows in Java Cards.
The tool implements a binary code disassembler for Java Card appli-
cations, and a data flow analysis (Lam and Ullman, 2007) based on
a multi-level security policy and the theory of abstract interpreta-
tion (Cousot and Cousot, 1992). The multi-level security policy is
used to associate security levels to applications, and the theory of
abstract interpretation is used to re-define the semantics of byte-
code instructions over a lattice of security levels. The lattice is given
by the powerset of the applications’ levels. The analysis uses a set
of rules for detecting information flows in the bytecode. Applica-
tions are analyzed one at a time, and the analysis is carried out on
a per-method basis. This enables a modular analysis similar to that
performed by the Java bytecode verifier, which aims to check type-
correctness of Java bytecode (Leroy, 2001). We use an ambient file
to store and propagate security levels of methods (i.e., methods’
arguments, return, and calling environment), and the security lev-
els of objects in the heap. With this approach, information flows in
the bytecode are assessed by checking that the security level of the
applications’ shared resources do not exceed the level specified in
the security policy.

The ultimate aim of this tool is to help developers under-
stand how information is propagated in different multi-applicative
scenarios. On the one hand, developers can model different multi-
applicative scenarios simply by customizing the security levels of

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.05.061

dx.doi.org/10.1016/j.jss.2012.05.061
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:m.avvenuti@ing.unipi.it
mailto:cinzia.bernardeschi@ing.unipi.it
mailto:nicoletta.defrancesco@ing.unipi.it
mailto:paolo.masci@eecs.qmul.ac.uk
dx.doi.org/10.1016/j.jss.2012.05.061

2480 M. Avvenuti et al. / The Journal of Systems and Software 85 (2012) 2479– 2493

Fig. 1. The Java Card System.

methods and objects in the heap. On the other hand, developers can
also study how information stored in specific variables propagates
within the bytecode.

The contribution of this work is twofold: (i) we extend the
approach for checking information flow in the bytecode defined in
our previous work (Avvenuti et al., 2003; Barbuti et al., 2004), which
covered only a limited subset of the Java language; (ii) we devel-
oped a tool that covers the Java Card 2.2.2 instruction set and that
allows the user to define different security policies. The tool embeds
a CAP file disassembler and visualizer, which enables to identify the
precise cause of information flow. A preliminary version of the tool
has been presented in Avvenuti et al. (2009). The current version of
JCSI is available at http://www.eecs.qmul.ac.uk/ masci/JCSI.

The rest of the paper is organised as follows. Section 2 describes
the Java Card system. Section 3 explains the information flow prob-
lem in Java Cards. Section 4 presents the architecture of the JCSI
tool, and describes in detail how the analysis is performed. Section
5 reports examples of application of JCSI. Section 8 concludes the
paper.

2. Java Card System

The Java Card System is a platform for executing applications.
The system relies on the Java Card Runtime Environment (JCRE) for
managing resources, executing programs and applying access con-
trol mechanisms. The JCRE consists of a native operating system
(OS), a Java Card Virtual Machine (JCVM) and a number of Applica-
tion Programming Interfaces (APIs). Java Card applications reside
in a user space and they can use JCRE services (see Fig. 1).

Java Card applications and JCRE’s APIs are bundled into pack-
ages, which are data structures that store the compiled bytecode of
Java classes and interfaces. A package1 is uniquely identified and
selected by an application identifier (AID), which is specified in the
CAP file.

The Java Card firewall enforces access control mechanisms on
applets. In order to enforce the access control rules, the firewall
checks all operations performed by applets at run-time, and enables
information exchange between applets belonging to different con-
texts only through specific shareable objects: Entry Point Objects
(EPOs) and Shareable Interface Objects (SIOs). EPO objects belong
to the JCRE’s context, and they provide methods for exchanging
messages (e.g., to request access to a resource), and for customiz-
ing access control rules (e.g., to identify the identity of another
application). SIO objects, on the other hand, belong to applications’

1 In this paper we use the term package and application indifferently.

context, and they provide methods to define the functionalities of
applications’ shared objects.

Java Card bytecode. Java Card applications are composed of
applets, and they are compiled into binary CAP (Converted APplet)
files, which contain an executable representation of the classes and
interfaces defined in the applets. Methods defined in the applets
are encoded as sequences of Java Card bytecode instructions. The
semantics of Java Card bytecode instructions is defined in the Java
Card Virtual Machine Language, which is an assembly language for
Virtual Machines with an operand stack and a memory of local vari-
ables (registers). Instructions are typed: for example, iload (where
i is an abbreviation for int) loads an integer onto the stack, while
aload (where a stands for address of the Object) loads a refer-
ence which may point to any class and interface type, or array type.
The instruction set includes, among others, construct for defining
sub-routines and exception handlers.

In this work, we consider the complete Java Card 2.2.2 instruc-
tion set, which is summarized in Fig. 2. Let T denote all types. T
includes the set B = {boolean, short, byte, int} of primitive (basic)
types, the set C′ = C ∪ {Object} of user defined classes, together
with the pre-defined Object class, the set I of user defined inter-
faces and the set A of array types. In the instruction set, we let
B′ = B ∪ {Object}. Given a class c ∈ C, we use the syntax c . f : � to
denote field f (with type �) of class c, the syntax [� to denote arrays
of type � and the syntax �0 . mt(�1, . . ., �n) : �r to denote the method
mt of the class or interface �0 ∈ C ∪ I with arguments of type �1, . . .,
�n and return type �r.

In the following, given a method mt, Bmt denotes the finite
sequence of bytecode instructions of mt. Given a set L = {0, 1, . . .}
of instruction addresses, we use Bmt[i], i ∈ L, to indicate the i-th
instruction in the sequence, being Bmt[0] the entry point. The sub-
script mt is omitted when clear from the context.

3. Information flow in Java Cards

Given a program with variables partitioned into two disjoint
sets of high security (i.e., confidential) and low security (i.e., public)
variables, the program has secure information flow if observations of
the final value of low security variables do not reveal information
about the initial values of high security variables (Bell and Padula,
1973; Denning, 1976; Denning and Denning, 1977).

In order to exemplify the concept of secure information flow,
consider the following situations. Assume that y is a variable that
stores confidential data (i.e., a high security variable), and x a
public variable (i.e., a low security variable). In order to have
secure information flow, programs should not contain instruc-
tions that assign y to x, which is called explicit information flow.

http://www.eecs.qmul.ac.uk/~masci/JCSI

Download English Version:

https://daneshyari.com/en/article/461744

Download Persian Version:

https://daneshyari.com/article/461744

Daneshyari.com

https://daneshyari.com/en/article/461744
https://daneshyari.com/article/461744
https://daneshyari.com

