
The Journal of Systems and Software 85 (2012) 2519– 2530

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Performance analysis of SCOOP programs

Benjamin Morandi ∗, Sebastian Nanz, Bertrand Meyer
Chair of Software Engineering, ETH Zurich, Clausiusstrasse 59, 8092 Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 21 December 2011
Received in revised form 23 May 2012
Accepted 23 May 2012
Available online 5 June 2012

Keywords:
Performance analysis
Performance metric
Profiling
Tracing
Concurrent programming
SCOOP

a b s t r a c t

To support developers in writing reliable and efficient concurrent programs, novel concurrent program-
ming abstractions have been proposed in recent years. Programming with such abstractions requires
new analysis tools because the execution semantics often differs considerably from established mod-
els. We present a performance analyzer that is based on new metrics for programs written in SCOOP,
an object-oriented programming model for concurrency. We discuss how the metrics can be used to
discover performance issues, and we use the tool to optimize a concurrent robotic control software.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Avoiding concurrency-specific errors such as data races and
deadlocks is still the responsibility of developers in most languages
that provide synchronization through concurrency libraries. To
avoid the problems of the library approach, a number of languages
have been proposed that integrate synchronization mechanisms.
SCOOP (Simple Concurrent Object-Oriented Programming) (Meyer,
1997; Nienaltowski, 2007), an object-oriented programming model
for concurrency, is one of them.

The main idea of SCOOP is to simplify the writing of cor-
rect concurrent programs, by allowing developers to use familiar
concepts from object-oriented programming, but protecting them
from common concurrency errors such as data races. Empirical evi-
dence supports the claim that SCOOP indeed simplifies reasoning
about concurrent programs as opposed to more established mod-
els (Nanz et al., 2011). The advantages of the model are due to a
runtime system that automatically takes care of operations such as
obtaining and releasing locks, without the need for explicit program
statements.

The complex interactions between concurrent components
make it difficult to analyze the behavior of concurrent programs.
Effective use of a programming model therefore requires tools to
help developers analyze and improve programs. Static analysis of
models, e.g., Ostroff et al. (2008), Brooke et al. (2007), West et al.
(2010), Nanz et al. (2008), can establish some degree of functional

∗ Corresponding author. Tel.: +41 44 632 7828; fax: +41 44 632 1435.
E-mail addresses: benjamin.morandi@inf.ethz.ch (B. Morandi),

sebastian.nanz@inf.ethz.ch (S. Nanz), bertrand.meyer@inf.ethz.ch (B. Meyer).

correctness. However, they fail to explain why a particular exe-
cution is slow, and they do not help choosing optimal execution
parameters. Addressing such issues requires adapting performance
analysis techniques to the context of concurrent, non-deterministic
execution. Section 6 surveys existing tools that address this goal
in the context of threading and various other concurrency mod-
els. They are not appropriate, however, for the semantics of
SCOOP, which requires different approaches for measuring and
visualization. For example, SCOOP programs go through synchro-
nization steps to lock resources and establish conditions on these
resources; a performance analyzer for SCOOP must take this into
account.

We present a performance analyzer for SCOOP programs. The
main contributions are performance metrics for SCOOP and a
technique to compute them from event traces. The resulting tool
has been integrated into the EVE development environment (ETH
Zurich, 2012a), which we extended with support for SCOOP; it can
be downloaded from the SCOOP website (ETH Zurich, 2012b). We
evaluate the metrics and the tool on a number of example prob-
lems, as well as on a larger case study on optimizing a robotics
control software written in SCOOP. To the best of our knowl-
edge, this work is the first to suggest performance metrics for
SCOOP.

This article is structured as follows. Section 2 gives an overview
of the SCOOP model. Section 3 introduces the metrics and shows
how to calculate them from events. Section 4 describes the tool
built around the metrics. Section 5 analyzes the time overhead of
the tool and shows how to optimize a concurrent robotic control
software using the tool. Finally, Section 6 provides an overview of
related work and Section 7 concludes with an outlook on future
work.

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.05.076

dx.doi.org/10.1016/j.jss.2012.05.076
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:benjamin.morandi@inf.ethz.ch
mailto:sebastian.nanz@inf.ethz.ch
mailto:bertrand.meyer@inf.ethz.ch
dx.doi.org/10.1016/j.jss.2012.05.076

2520 B. Morandi et al. / The Journal of Systems and Software 85 (2012) 2519– 2530

2. Background

This section gives an overview of SCOOP.

2.1. Introduction to SCOOP

The starting idea of SCOOP is that every object is associated
for its lifetime with a processor, called its handler. A processor is
an autonomous thread of control capable of executing actions on
objects. An object’s class describes the possible actions as features.
A processor can be a CPU, but it can also be implemented in soft-
ware, for example as a process or as a thread; any mechanism that
can execute instructions sequentially is suitable as a processor.

A variable x belonging to a processor can point to an object with
the same handler (non-separate object), or to an object on another
processor (separate object). In the first case, a feature call x.f is non-
separate: the handler of x executes the feature synchronously. In
this context, x is called the target of the feature call. In the second
case, the feature call is separate: the handler of x, i.e., the supplier,
executes the call asynchronously on behalf of the requester, i.e.,
the client. The possibility of asynchronous calls is the main source
of concurrent execution. The asynchronous nature of separate fea-
ture calls implies a distinction between a feature call and a feature
application: the client logs the call with the supplier (feature call)
and moves on; only at some later time will the supplier actually
execute the body (feature application).

The producer–consumer problem serves as a simple illustration
of these ideas. A root class defines the entities producer, consumer,
and buffer. Assume that each object is handled by its own proces-
sor. One can then simplify the discussion using a single name to
refer both to the object and its handler. For example, one can use
“producer” to refer both to the producer object and its handler.
producer: separate PRODUCER
consumer: separate CONSUMER
buffer: separate BUFFER [INTEGER]

– The data structure for exchanging objects between the producer and the
consumer.

The keyword separate specifies that the referenced objects may
be handled by a processor different from the current one. A creation
instruction on a separate entity such as producer will create an object
on another processor; by default the instruction also creates that
processor.

Both the producer and the consumer access an unbounded
buffer in feature calls such as buffer.put (n)and buffer.item. To ensure
exclusive access, the consumer must lock the buffer before access-
ing it. Such locking requirements of a feature must be expressed
in the formal argument list: any target of separate type within the
feature must occur as a formal argument; the arguments’ handlers
are locked for the duration of the feature execution, thus prevent-
ing data races. Such targets are called controlled. For instance, in
consume, buffer is a formal argument; the consumer has exclusive
access to the buffer while executing consume.

Condition synchronization relies on preconditions (after the
require keyword) to express wait conditions. Any precondition of
the form x.some condition makes the execution of the feature wait
until the condition is true. For example, the precondition of consume
delays the execution until the buffer is not empty. As the buffer is
unbounded, the corresponding producer feature does not need a
precondition.
consume (buffer: separate BUFFER [INTEGER])

– Consume an item from the buffer.
require

not (buffer.count = 0)
local

consumed item: INTEGER
do

consumed item:= buffer.item
end

buffer processorconsumer processor

buffer.item_with_log (consumer)

consumer.id

Fig. 1. A deadlock scenario based on incorrect handling of separate callbacks.

During a feature call, the consumer could pass its locks to the
buffer if it has a lock that the buffer requires. This mechanism is
known as lock passing. In such a case, the consumer would have to
wait for the passed locks to return. In buffer.item, the buffer does
not require any locks from the consumer; hence, the consumer
does not have to wait due to lock passing. However, the runtime
system ensures that the result of the call buffer.item is properly
assigned to the entity consumed item using a mechanism called wait
by necessity: while the consumer usually does not have to wait for
an asynchronous call to finish, it will do so if it needs the result.

2.2. SCOOP runtime

The SCOOP concepts require execution-time support, known as
the SCOOP runtime. The following description is abstract; actual
implementations may differ.

Each processor maintains a request queue of requests resulting
from feature calls on other processors. A non-separate feature call
can be processed right away without going through the request
queue; the processor creates a non-separate feature request for itself
and processes it right away using its call stack. The rest of this dis-
cussion applies to separate feature calls, such as the call on the
buffer performed on behalf of the consumer. When the client exe-
cutes such a feature call, it enqueues a separate feature request to the
request queue of the supplier’s handler. The supplier will process
the feature requests in the order of queuing.

Special attention is required in the case of separate callbacks,
which occur for example if the buffer performs a separate fea-
ture call on the consumer, which already has a lock on the buffer.
Enqueuing a feature request on the consumer could cause a dead-
lock if the separate callback is synchronous since the consumer
may already be waiting for the buffer. Fig. 1 illustrates this issue.
The solution is to add such feature requests, corresponding to sepa-
rate callbacks, ahead of all others in the request queue. This ensures
that consumer can process the feature request right away and the
buffer can continue.

Whenever a processor is ready to let go of the obtained locks,
i.e., at the end of its current feature application, it issues an unlock
request to each locked processor. Each locked processor will unlock
itself as soon as it processed all previous feature requests. In the
example, the producer issues an unlock request to the buffer after
it issued a feature request for put.

The runtime system includes a scheduler, which serves as an
arbiter between processors. When a processor is ready to process
a feature request in its request queue, it will only be able to pro-
ceed after the request is satisfiable. In a synchronization step, the
processor tries to obtain the locks on the arguments’ handlers in
a way that the precondition holds. For this purpose, the processor
sends a locking request to the scheduler, which stores the request
in a queue and schedules satisfiable requests for application. Once
the scheduler satisfies the request, the processor starts an execution
step.

The scheduler used for this work is a dedicated thread of control
(Nienaltowski, 2007). It guarantees that a satisfiable locking request

Download English Version:

https://daneshyari.com/en/article/461747

Download Persian Version:

https://daneshyari.com/article/461747

Daneshyari.com

https://daneshyari.com/en/article/461747
https://daneshyari.com/article/461747
https://daneshyari.com

