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Let X1, X2, . . . be i.i.d. random variables with partial sums Sn , n � 1. The now classical
Baum–Katz theorem provides necessary and sufficient moment conditions for the conver-
gence of

∑∞
n=1 nr/p−2 P (|Sn| � εn1/p) for fixed ε > 0. An equally classical paper by Heyde

in 1975 initiated what is now called precise asymptotics, namely asymptotics for the same
sum (for the case r = 2 and p = 1) when, instead, ε ↘ 0. In this paper we extend a result
due to Klesov (1994), in which he determined the convergence rate in Heyde’s theorem.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the seminal paper [11] Hsu and Robbins introduced the concept of complete convergence, and proved that the sequence
of arithmetic means of independent, identically distributed (i.i.d.) random variables converges completely (which means that
the Borel–Cantelli sum of certain tail probabilities converges) to the expected value of the variables, provided their variance
is finite. The necessity was proved afterwards by Erdős [5,6]. The Hsu–Robbins–Erdős result was later extended in a series
of papers which culminated in the paper by Baum and Katz [1]. The following result is a part of their main result.

Theorem 1.1. Let r > 0, 0 < p < 2 and r � p. Suppose that X, X1, X2, . . . are i.i.d. random variables with E|X |r < ∞ and, if r � 1,
E X = 0, and set Sn = ∑n

k=1 Xk, n � 1. Then

∞∑
n=1

n(r/p)−2 P
(|Sn| � εn1/p)

< ∞, for all ε > 0. (1.1)

Conversely, if the sum is finite for some ε > 0, then E|X |r < ∞ and, if r � 1, E X = 0. In particular, the conclusion then holds for all
ε > 0.

Remark 1.1. For r = 2 and p = 1 the result reduces to the theorem of Hsu and Robbins [11] (sufficiency) and Erdős [5,6]
(necessity). For r = p = 1 we rediscover the famous theorem of Spitzer [17]. For r > 0 and p = 1 the result was earlier
proved by Katz; see [12]. �

Results of this kind naturally provide information about the rate at which the probabilities in (1.1) converge to zero for
fixed ε. Another problem of interest is to ask for the rate at which these probabilities tend to one as ε ↘ 0. Toward that
end, Heyde [10] proved that
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lim
ε↘0

ε2
∞∑

n=1

P
(|Sn| � εn

) = E X2, (1.2)

whenever E X = 0 and E X2 < ∞. For the remaining values of r and p we refer to [3,16,8]. For ease of reference we state
the main result from [3] which is relevant for our purpose here.

Theorem 1.2. Let r � 2 and 0 < p < 2. Suppose that X, X1, X2, . . . are i.i.d. random variables with E X = 0, E X2 = σ 2 > 0 and
E|X |r < ∞, and set Sn = ∑n

k=1 Xk, n � 1. Then

lim
ε↘0

ε2(r−p)/(2−p)

∞∑
n=1

n(r/p)−2 P
(|Sn| � εn1/p) = p

r − p
E|Z |2(r−p)/(2−p), (1.3)

where Z is normal with mean 0 and variance σ 2 > 0.

Results of this kind are frequently called “Precise asymptotics for. . . ”, and an abundance of papers with various extensions
of the i.i.d. case and the power weights have been produced. For an extensive review we refer [9].

The following result, due to Klesov [13], gives information about the rate of convergence in Heyde’s (rate) result (1.2).

Theorem 1.3. Let X , X1, X2, . . . be i.i.d. random variables, and set Sn = ∑n
k=1 Xk, n � 1.

(a) If X is normal with mean 0 and variance σ 2 > 0, then

lim
ε↘0

( ∞∑
n=1

P
(|Sn| � εn

) − σ 2

ε2

)
= −1

2
.

(b) If E X = 0, E X2 = σ 2 > 0, and E|X |3 < ∞, then

lim
ε↘0

ε3/2

( ∞∑
n=1

P
(|Sn| � εn

) − σ 2

ε2

)
= 0.

The aim of the present paper is to prove the following extension of Klesov’s theorem with respect to Theorem 1.2.

Theorem 1.4. Let r � 2 and 0 < p < 2. Suppose that X, X1, X2, . . . are i.i.d. random variables, and set Sn = ∑n
k=1 Xk, n � 1. Let Z be

normal with mean 0 and variance σ 2 > 0.

(a) If E X = 0, E X2 = σ 2 > 0, and E|X |q < ∞ for some r < q � 3, then

lim
ε↘0

εq(r−p)/(q−p)

( ∞∑
n=1

n(r/p)−2 P
(|Sn| � εn1/p) − p

r − p
ε−2(r−p)/(2−p)E|Z |2(r−p)/(2−p)

)
= 0.

(b) If E X = 0, E X2 = σ 2 > 0, and E|X |q < ∞ for some q � 3 with q > (2r − 3p)/(2 − p), then

lim
ε↘0

ε2q(r−p)/(p+q(2−p))

( ∞∑
n=1

n(r/p)−2 P
(|Sn| � εn1/p) − p

r − p
ε−2(r−p)/(2−p)E|Z |2(r−p)/(2−p)

)
= 0.

Remark 1.2. Theorem 1.4(a)–(b) extends the above Theorem 1.3(b) of Klesov [13], since, for r = 2, p = 1, and q = 3, one has
q(r − p)/(q − p) = 3/2 = 2q(r − p)/(p + q(2 − p)). �

The proof of Theorem 1.4 is based on the following proposition concerning the Gaussian case and a Berry–Esseen type
remainder term argument.

Proposition 1.1. Let 0 < p < 2 and r � 2, and suppose that Z ; X1, X2, . . . are i.i.d. normal random variables with mean 0 and variance
σ 2 > 0, and set Sn = ∑n

k=1 Xk, n � 1.

(i) If 0 < r < 2p, then

lim
ε↘0

( ∞∑
n=1

n(r/p)−2 P
(|Sn| � εn1/p) − p

r − p
· ε− 2(r−p)

2−p E|Z | 2(r−p)
2−p

)
= 0.
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