
The Journal of Systems and Software 85 (2012) 2593– 2603

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Optimizing virtual machines using hybrid virtualization

Qian Lina, Zhengwei Qia,∗, Jiewei Wua, Yaozu Dongb, Haibing Guana

a Shanghai Key Laboratory of Scalable Computing and Systems Shanghai Jiao Tong University, Shanghai, PR China
b Intel Open Source Technology Center, PR China

a r t i c l e i n f o

Article history:
Received 10 October 2011
Received in revised form 31 May 2012
Accepted 31 May 2012
Available online 9 June 2012

Keywords:
Hybrid virtualization
Hardware-assisted virtualization
Paravirtualization

a b s t r a c t

Minimizing virtualization overhead and improving the reliability of virtual machines are challenging
when establishing virtual machine cluster. Paravirtualization and hardware-assisted virtualization are
two mainstream solutions for modern system virtualization. Hardware-assisted virtualization is supe-
rior in CPU and memory virtualization and becoming the leading solution, yet paravirtualization is still
valuable in some aspects as it is capable of shortening the disposal path of I/O virtualization. Thus we
propose the hybrid virtualization which runs the paravirtualized guest in the hardware-assisted virtual
machine container to take advantage of both. Experiment results indicate that our hybrid solution out-
weighs origin paravirtualization by nearly 30% in memory intensive test and 50% in microbenchmarks.
Meanwhile, compared with the origin hardware-assisted virtual machine, hybrid guest owns over 16%
improvement in I/O intensive workloads.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

System virtualization is becoming ubiquitous in contempo-
rary datacenter. Consolidating physical server by building virtual
machine cluster is universally adopted to maximize the utiliza-
tion of hardware resources for computing. Two fundamental but
challenging requirements are to minimize virtualization overhead
(Mergen et al., 2006) and to guarantee the reliability building virtu-
alized infrastructure. Therefore, low level design of VM architecture
is of great significance.

The conventional x86 architecture is incapable of classical trap-
and-emulate virtualization, causing paravirtualization to be the
optimal virtualization strategy in the past (Barham et al., 2003;
Adams and Agesen, 2006). Recently, hardware-assisted virtual-
ization on x86 architecture has become a competitive alternative
method. Yet Adams and Agesen (2006) compared the performance
between software-only VMM and hardware-assisted VMM, and
the statistics showed that HVM suffered from much higher over-
head than PVM owing to the frequent context switching, which
had to perform an extra host/guest round trip in the early HVM
solution. However, the latest hardware-assisted virtualization
improvement introduces heavy overhead. Hardware-assisted pag-
ing (Neiger et al., 2006) allows hardware to handle the guest MMU
operation and translate guest physical address to real machine
address dynamically, accelerating memory relevant operations and
improving overall performance of the HVM.

∗ Corresponding author. Tel.: (+86) 021 34205595.
E-mail address: qizhwei@sjtu.edu.cn (Z. Qi).

Although hardware-assisted virtualization performs well with
CPU intensive workloads, it manifests low efficiency when pro-
cessing I/O events. Our experiment shows that PVM performs up
to 20% lower CPU utilization than HVM with the 10 Gbps net-
work workload. The interrupt controller of HVM originates in the
native environment with fast memory-mapped I/O access but is
suboptimal in the virtual environment due to the requirement
of trap-and-emulate. Frequent interrupts lead to frequent context
switches and high round trip penalty, particularly for multiple vir-
tual machines (Menon et al., 2005).

Consequently, hardware-assisted virtualization is superior in
CPU and memory virtualization, and software-only virtualization
owns optimized features for I/O virtualization. In practice, the per-
formance issue is very workload-dependent because most real
world applications are the mix of CPU and I/O intensive tasks.
Therefore, hybrid virtualization techniques (Adams and Agesen,
2006) become promising. Nevertheless, the previous Hybrid VMM
prototype (Adams and Agesen, 2006) leveraged the guest behavior-
driven heuristics to improve performance. But its performance gain
heavily depended on the prediction accuracy, and became marginal
for modern workloads.

The contribution of this paper is a practical one. We propose a
novel hybrid solution which takes both superiority features of PVM
and HVM, and implement the prototype on Xen platform. The prin-
cipal idea of our hybrid virtualization is to run the paravirtualized
guest in the HVM container to reach maximum optimization. The
Hybrid VM primarily features less MMU operation latency bene-
fited from hardware-assisted paging technique and lower interrupt
disposal overhead profited from the paravirtualized event channel.
Besides, the original hardware-assisted virtualization environment

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.05.093

dx.doi.org/10.1016/j.jss.2012.05.093
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:qizhwei@sjtu.edu.cn
dx.doi.org/10.1016/j.jss.2012.05.093

2594 Q. Lin et al. / The Journal of Systems and Software 85 (2012) 2593– 2603

Fig. 1. Xen architecture. The Xen hypervisor is managing three types of VM. Domain0 plays an administrator role and supplies service for DomainU involving PVM and HVM.
The front-end device drivers in DomainU communicate with the back-end drivers in Domain0 through device channel.

suffers from the issue of timer synchronization, which renders dif-
ferent timer resources hard to keep their relative timing pace to
guarantee the timing correctness of VMs. We propose a feasible
solution within the hybrid virtualization to solve this problem.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of virtualization as well as the software and
hardware approaches with their advantages and disadvantages.
Section 3 presents the hybrid virtualization architecture and design
details. Section 4 deeply analysis the key factor affecting the effi-
ciency of system call in guest OS, which can be treated as the
performance indicator of VM. Section 5 specifically discusses the
issue of timer synchronization under virtualized environment and
the solution accessed by the hybrid virtualization. Section 6 ana-
lyzes the performance evaluation to demonstrate the performance
improvements of the hybrid virtualization. Section 7 summarizes
related work and Section 8 concludes.

2. Pros and cons in different virtualization mechanisms

With the promotion of virtualization technology, software-only
and hardware-assisted virtualization approaches play different
superiority in various fields. In this section, we firstly introduce the
background of two mainstream virtualization techniques, and then
present the details about advantages and disadvantages between
them.

2.1. Paravirtualization

Xen (Barham et al., 2003; Clark et al., 2004) is famous for
supporting paravirtualization (Whitaker et al., 2002). The Xen
hypervisor locates between the physical hardware layer and the
guest OS layer, as shown in Fig. 1 (Liu et al., 2006). The Xen
hypervisor runs at the lowest level and owns the most privileged
access to hardware. Among various VMs, Domain0 plays an admin-
istrator role and provides service for DomainU VMs. Domain0
also extends part of the functionalities of hypervisor. For exam-
ple, Domain0 hosts back-end device drivers to manage the device
multi-access from VMs, which utilize front-end device drivers and

device channel to communicate with the back-end foundation
(Xen.org, 2008).

The PVM guest kernel requires purposive modifications to adapt
efficient software-only virtualization (Barham et al., 2003). Gen-
erally, x86 CPU privilege level is distinguished by different rings,
where Ring0 is most privileged and Ring3 is least. As the hypervi-
sor requires higher privilege level than VMs, the PVM guest kernel
yields Ring0 to the hypervisor. Since paravirtualization does not
change the application interfaces, user software can run in the Xen
environment without any modification. Besides, paravirtualization
uses DPT (Barham et al., 2003) as its memory virtualization strategy.
In order to avoid page table switch at the time of hypervisor/guest
boundary crossing, DPT modifies guest page table to be suitable
for hardware processor usage as well as guest OS access. By mod-
ifying guest kernel, DPT partitions address space between guest
OS and hypervisor, utilizing segment limit check to protect hyper-
visor from guest access. It reserves certain area of address space
from each guest kernel to be dedicated to hypervisor usage. Conse-
quently, each PVM shares its page table with the hypervisor so that
the hypervisor can paravirtualize the guest paging mechanism.

2.2. Hardware-assisted virtualization

Hardware-assisted virtualization technique simplifies the
design of virtualization management layer, i.e. hypervisor, and
enhances the general performance with the help of proces-
sor virtualization. The conventional virtualization technique of
dynamical binary translation was a compromising solution for
system virtualizaiton without guest OS modification. The critical
issue of dynamical binary translation is its low performance
efficiency and design complexity due to the incapability of clas-
sical trap-and-emulate virtualization with previous generation
of x86 architecture. Nevertheless, modern x86 architecture with
hardware-assisted virtualization extension has fixed the trap-
and-emulate virtualization hole on the architecture level, which
highly reduces the design complexity of hypervisor. Hardware-
assisted virtualization becomes an alternative and improved
solution replacing dynamical binary translation. Furthermore,

Download	English	Version:

https://daneshyari.com/en/article/461753

Download	Persian	Version:

https://daneshyari.com/article/461753

Daneshyari.com

https://daneshyari.com/en/article/461753
https://daneshyari.com/article/461753
https://daneshyari.com/

