
The Journal of Systems and Software 85 (2012) 2652– 2664

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Execution of natural language requirements using State Machines synthesised
from Behavior Trees

Soon-Kyeong Kima,∗, Toby Myersb, Marc-Florian Wendlandc, Peter A. Lindsayd,a

a Software Systems Research Group, Queensland Research Lab, National ICT, Australia
b Griffith University, Nathan, QLD 4111, Australia
c Fraunhofer Institut FOKUS, Berlin, Germany
d School of ITEE, The University of Queensland, QLD 4072, Australia

a r t i c l e i n f o

Article history:
Received 18 November 2011
Received in revised form 5 April 2012
Accepted 5 June 2012
Available online 19 June 2012

Keywords:
Requirements
Requirements Validation
Behavior Trees
Behavior Engineering
MDE
Model Transformation
UML State Machine

a b s t r a c t

This paper defines a transformation from Behavior Tree models to UML state machines. Behavior Trees
are a graphical modelling notation for capturing and formalising dynamic system behaviour described
in natural language requirements. But state machines are more widely used in software development,
and are required for use with many tools, such as test case generators. Combining the two approaches
provides a formal path from natural language requirements to an executable model of the system. This in
turn facilitates requirements validation and transition to model-driven software development methods.
The approach is demonstrated by defining a mapping from Behavior Trees to UML state machines using
the ATLAS Transformation Language (ATL) in the Eclipse Modeling Framework. A security-alarm system
case study is used to illustrate the use of Behavior Trees and execution to debug requirements.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Behavior Trees are a notation for capturing natural-language
requirements in a graphical format in a manner which stays close
to the structure and terminology of the original requirements,
but with a formal semantics. Geoff Dromey described a method
– which he called Behavior Engineering (BE) (Dromey, 2003, 2006)
– for developing a Behavior Tree (BT) model from requirements
systematically, in such a way that issues with consistency and com-
pleteness are revealed and resolved as the tree is built. The resulting
tree expresses all the scenarios and use cases that are implied by
the requirements in a single coherent model.

Evidence from industry use (Boston, 2008; Powell, 2007)
has demonstrated that requirements quality can be significantly
improved using this approach, and that the resulting models
are much easier for non-experts to understand. This in turn
leads to improved requirements understanding early in the sys-
tem and software development process. The BE method supports

∗ Corresponding author.
E-mail addresses: Soon-Kyeong.Kim@nicta.com.au (S.-K. Kim),

Toby.Myers@griffithuni.edu.au (T. Myers),
marc-florian.wendland@fokus.fraunhofer.de (M.-F. Wendland),
p.lindsay@uq.edu.au (P.A. Lindsay).

transformation of high-level BTs into more detailed ones in which
design decisions are embodied, and there are tools for generating
code from sufficiently detailed models, but these aspects of the
method are not as widely used. At some point it becomes preferable
to switch to more traditional development notations and methods,
such as UML and MDE (Schmidt, 2006).

In this paper we define a transformation from basic BT models
to UML state machine (SM) models. The full BT notation supports
a rich variety of relations, capturing non-functional aspects (the
what, why, when, where and how of requirements) as extra anno-
tations to nodes in the Behavior Tree. The stripped-down basic
BT notation captures functionality and behaviour, such as control
and data flow (Lindsay, 2010) — the “logic” of the requirements.
Ensuring the consistency and completeness of this logic can be
one of the hardest things for a system developer to get right,
and one of the most expensive things to fix if it is wrong (Glass,
2004).

We contend that BT modelling combined with formal transfor-
mation to SM models is a highly effective means for going from
natural-language system requirements to Model Driven Engineer-
ing (MDE) in UML. Conversely, the ability to execute SM models
enables dynamic aspects of BT models to debugged, leading to
improved system specifications. We illustrate the approach on a
well known case study – the security alarm system from Prowell
et al. (1999).

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.06.013

dx.doi.org/10.1016/j.jss.2012.06.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:Soon-Kyeong.Kim@nicta.com.au
mailto:Toby.Myers@griffithuni.edu.au
mailto:marc-florian.wendland@fokus.fraunhofer.de
mailto:p.lindsay@uq.edu.au
dx.doi.org/10.1016/j.jss.2012.06.013

S.-K. Kim et al. / The Journal of Systems and Software 85 (2012) 2652– 2664 2653

The paper is structured as follows: Section 2 describes related
work, including potential applications of the translation. Section 3
describes the basic BT notation and illustrates it on the case study.
Section 4 describes the BT-to-SM transformation rules and illus-
trates them on a set of small examples that capture generic BT
structures. Section 5 illustrates how execution of the SM model
reveals issues with formulation of requirements in the case study
as an application of the transformation. Section 6 summarises our
approach and discusses future work. Prior familiarity with UML
state machines is assumed (OMG, 2011a).

2. Related work

Other papers have presented translational semantics for the BT
notation, but ours is the first full translation to state machines.
(Grunske et al., 2008) define a graph grammar-based transfor-
mation from BT models to Action Systems, as used by the SAL
model checking tool. The SAL translation has been used to pro-
vide support for Failure Modes and Effects Analysis (Grunske
et al., 2011) and Cut Set Analysis (Lindsay et al., 2011) using
the BT method. Colvin et al. (2008) extend the BT notation with
timing requirements, with a translation to the UPPAAL model
checker. They also extend the BT notation with probability and
timing, with a translation to the PRISM stochastic model checker
in Colvin et al. (2007). Colvin and Hayes (2010) provide a full for-
mal static semantics for the BT notation in an extension of the CSP
notation.

Other approaches have been developed for developing SM mod-
els from requirements-capture notations, including UML Sequence
Diagrams (Whittle and Schumann, 2000), Message Sequence Charts
(Kruger, 2000; Uchitel et al., 2003) and Live Sequence Charts
(Harel et al., 2005; Meng et al., 2011). As noted in Whittle
and Jayaraman (2006), however relationships between scenarios
and/or use cases are not defined explicitly, which makes it diffi-
cult to generate a complete executable SM. Whittle and Jayaraman
(2006) address this problem by explicitly defining relationships
between scenarios and use cases using activity diagrams and inter-
action diagrams, and then generate a SM from these diagrams.
By contrast BTs integrate use cases and scenarios into a single
model.

Animators and code generators have been developed for BTs,
but they are generally still embryonic. By contrast, many simula-
tion tools support UML state machines, to a greater or lesser extent,
with varying interpretations of SM semantics. We use the SHIRE
tool here (Höfig et al., 2011), with an extension to enable visual-
isation of execution sequences. Crane and Dingel (2007) present
syntactic and semantic differences between the UML SM and its
variants (e.g. classical and Rhapsody statecharts) and discuss the
implications for supporting tools. OMG has released a new speci-
fication notation fUML (OMG, 2011b) within the UML family, that
describes a fundamental subset for an executable representation of
UML. However, fUML is based solely on activities and as yet does
not support the state concept which is vital in mapping BTs to UML,
and there is no mature execution tool for fUML as yet.

There are many approaches to model-based testing based on
UML state machines. These approaches include generation and
specification of test cases (Chevalley and Thévenod-Fosse, 2001;
Kim et al., 1999). BT models can be developed directly from high-
level functional specifications of systems, so are potentially a strong
basis for derivation of system-level test cases, via state machines
and SM-based testing tools. The latter include commercial tools
(Conformiq, 2011; TestCast MBT, 2011; MBTsuite, 2011) and non-
commercial tools (Alin et al., 2010; SpecExplorer, 2011). This topic
is the subject on ongoing research.

Fig. 1. Elements of a BT node.

3. Introduction to Behavior Trees

This section describes the BT notation and illustrates it on the
security alarm system case study.

3.1. Behavior Tree notation

The Behavior Tree notation is part of a whole methodology of
systems and software engineering originally developed by Geoff
Dromey called Behavior Engineering (Dromey, 2003). Behavior
Trees capture the dynamic behaviour of a system of components in
a graphical form. The nodes in the tree describe how components
change state in response to flow of data and/or control in multiple
parallel threads. Behavior Tree models are developed directly from
natural-language system functional requirements by a stepwise
process of first translating the behaviour expressed by individual
requirements into a partial tree and then integrating the fragments
together to form a complete tree. Nodes in the tree are tagged with
identifiers of the requirements that gave rise to them, for traceabil-
ity.

Fig. 1 displays the full contents of a BT node. Each node (A) is
associated with a component (C) and has a ‘behaviour’ (D and E),
which is described in more detail below. It can also have an operator
(F) and/or label (G), which describe flow of control. The tag (B) has
two parts: a link (H) which traces the node back to the requirements
that gave rise to it; and a traceability status (I), which the modeller
uses to indicate how well the requirement captures the behaviour
(not used in this paper).

The different ways nodes can be connected in a Behavior Tree
are shown in Fig. 2, together with the different node types and oper-
ators. Control flows down branches according to the rules sketched
out below: see Behavior Tree Group (2007) for more details. Control
flow forks into separate threads when a parallel branching node is
reached. For alternative branching, only one thread gets executed,
chosen nondeterministically. Although Fig. 2(l–m) show just two
branches below a branching node, more than two are also allowed.
For the purposes of this paper a fully interleaved control-flow
semantics applies. (Sometimes internal actions are given priority
over external I/O, but that will not be covered here.) The excep-
tion is when nodes are joined by atomic composition (cf. Fig. 2(o)):
when flow reaches an atomic grouping, other threads block until
all of the nodes in the group have been executed.

The meaning of the different node types is as follows:

• State realisation node Component1[State1] indicates that Com-
ponent1 is in State1.

• Selection node Component1?Condition1 ? is similar to an if state-
ment: if Component1 satisfies Condition1 when control reaches
this node, flow of control continues along the branch; otherwise it
terminates. Typically selection nodes appear immediately under
an alternative branching node; sometimes a Component1?ELSE?
is used, to cover the case where all the other selections fail.

• Guard node Component1???Condition1??? is similar to a wait
statement: the Condition1 is continuously re-evaluated and flow

Download English Version:

https://daneshyari.com/en/article/461757

Download Persian Version:

https://daneshyari.com/article/461757

Daneshyari.com

https://daneshyari.com/en/article/461757
https://daneshyari.com/article/461757
https://daneshyari.com

