Available online at www.sciencedirect.com

ScienceDirect

> The Journal of
Systems and
Software

ELSEVIER The Journal of Systems and Software 81 (2008) 747-763

www.elsevier.com/locate/jss

Teaching disciplined software development

Dieter Rombach ?, Jiirgen Miinch 2, Alexis Ocampo **, Watts S. Humphrey °, Dan Burton °

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
® Software Engineering Institute, Carnegie Mellon University, 15213-3890 Pittsburg, USA

Received 1 April 2007; received in revised form 8 June 2007; accepted 9 June 2007
Available online 16 June 2007

Abstract

Discipline is an essential prerequisite for the development of large and complex software-intensive systems. However, discipline is also
important on the level of individual development activities. A major challenge for teaching disciplined software development is to enable
students to experience the benefits of discipline and to overcome the gap between real professional scenarios and scenarios used in soft-
ware engineering university courses. Students often do not have the chance to internalize what disciplined software development means
at both the individual and collaborative level. Therefore, students often feel overwhelmed by the complexity of disciplined development
and later on tend to avoid applying the underlying principles. The Personal Software Process (PSP) and the Team Software Process
(TSP) are tools designed to help software engineers control, manage, and improve the way they work at both the individual and collab-
orative level. Both tools have been considered effective means for introducing discipline into the conscience of professional developers. In
this paper, we address the meaning of disciplined software development, its benefits, and the challenges of teaching it. We present a quan-
titative study that demonstrates the benefits of disciplined software development on the individual level and provides further experience
and recommendations with PSP and TSP as teaching tools.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Software development; Productivity; Defect density; Size estimation; Effort estimation; Yield; Personal software process; Team software
process; Experimental software engineering; Software engineering education

1. Introduction

In this paper, we use a definition of discipline that
relates to skill building. The “focus of discipline is on
improving performance ... it concerns the fidelity with
which a defined process is actually followed” (Humphrey,
2006). Discipline is particularly important in software
development because many software products are used in
critical applications, and because undisciplined software
development work has a large potential for causing eco-
nomic or even physical harm. Over the last 20 years, a
growing family of technical and management practices

* Corresponding author. Tel.: +49 631 6800 2167; fax: +49 631 6800
1399.

E-mail addresses: Dieter.Rombach@jiese.fraunhofer.de (D. Rombach),
Juergen.Muench@iese.fraunhofer.de (J. Miinch), Alexis.Ocampo@iese.
fraunhofer.de (A. Ocampo), watts@sei.cmu.edu (W.S. Humphrey),
dburton@sei.cmu.edu (D. Burton).

0164-1212/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2007.06.004

have been developed that, if properly used, will consistently
deliver quality products on committed schedules. However,
when team members do not properly follow these practices,
their projects are typically late, over cost, and produce
poor-quality products.

The Personal Software Process (PSP) course guides
faculty in teaching disciplined development practices to
software engineering and computer science students
(Humphrey, 2005). While the PSP has not yet been widely
adopted by academic programs, there is increasing indus-
trial use and the results show that, when engineers are dis-
ciplined in their personal practices, their performance
improves. This paper summarizes a study of the data gath-
ered while training 3090 engineers. Most of the students
were experienced engineers working for industrial software
development organizations, and the instructors were either
from the Software Engineering Institute (SEI) at Carnegie
Mellon University or were trained by the SEI.

mailto:Dieter.Rombach@iese.fraunhofer.de
mailto:Juergen.Muench@iese.fraunhofer.de
mailto:Alexis.Ocampo@iese.
mailto:watts@sei.cmu.edu
mailto:dburton@sei.cmu.edu

748 D. Rombach et al. | The Journal of Systems and Software 81 (2008) 747-763

1.1. Why is discipline important for software organizations?

The performance of a development organization is
determined by the performance of its engineering teams.
Further, the performance of an engineering team is deter-
mined by the performance of the team members. Finally,
the performance of the engineers is, at least in part, deter-
mined by the practices these engineers follow in doing their
work.

While communication skills, native ability, intelligence,
and experience have an unquestioned effect on engineering
performance, this study shows that the predictability, qual-
ity, and productivity of a software developer’s work can be
measurably improved through training in disciplined per-
sonal practices. Furthermore, studies have shown that this
improved performance at the personal level results in com-
parable improvements in team and project performance
(Davis et al., 2003; McAndrews, 2000). These benefits are
typically manifested by shorter development cycle times,
fewer test defects, and reduced development and mainte-
nance costs.

1.2. Why is discipline important for students?

Development work is becoming more challenging every
year, and to succeed at this work, aspiring engineers must
focus on building their personal capabilities. “Excellence
starts with the individual. Achieving excellence is a con-
stant struggle, principally because the world is changing.
What was once considered excellent no longer is. This
means that we must continually focus on improving our
personal capabilities” (Humphrey, 2000). The critical need,
then, is to understand how performance is evaluated and
know what would constitute excellence.

While the performance of students is largely determined
by their ability to get good grades, the technical proficiency
of practicing engineers is not as significant in performance
evaluations and promotions. Except for the occasional
high- and low-performing exceptions, most graduate engi-
neers are assumed to be technically competent. One of the
major differentiators in industry is the engineer’s ability to
consistently and predictably produce quality results. When
engineers follow the disciplines taught by the PSP, they can
accurately plan their work, make responsible commit-
ments, consistently meet their commitments, and produce
high-quality results.

While these skills are important to engineering manage-
ment, they are particularly important to practicing engi-
neers. The reason is that when engineers consistently
meet their commitments, their managers soon realize that
they can manage themselves and still produce excellent
results. Then, since managers are typically very busy
people, they will largely trust these engineers to manage
themselves, and they will continue to trust them for as long
as the engineers continue meeting their commitments.
Finally, as any experienced engineer will attest, the ideal
engineering job is to be given an interesting and challenging

assignment and to be trusted to manage the work yourself.
That is the benefit of doing disciplined engineering
work.

1.3. Why is discipline important for software education?

Today, a typical software education does not teach dis-
ciplined engineering practices. As a result, the most com-
mon experience in software development organizations is
that their products are late, over cost, and of poor quality.
This means that typical software professionals work long
hours under severe schedule pressure and spend a large
portion of their time fixing defective products. Few engi-
neers like to have pizza at their desks for dinner, work
on most weekends, and to stay late into the night fixing
defects in test.

Most people prefer more balanced and satisfying
careers. Software engineering, when done with proper dis-
cipline, can be rewarding. It involves teamwork, creating
exciting and useful products, and having the satisfaction
of seeing your own creations do what you intended them
to do. It is potentially a great career. However, today, soft-
ware engineering has a poor image and student enrolments
are falling world wide, despite the demand for software
professionals. To meet industry needs, and to have a grow-
ing and vibrant academic community in computer science
and software engineering, the software development career
must be made more attractive to potential students. This is
another important reason to teach disciplined software
development.

The rest of this article is structured as follows: Section 2
presents the main characteristics of disciplined software
development; Section 3 presents details of the study based
on data collected from 3090 engineers, who participated in
PSP trainings. The study’s main objective was to investi-
gate the effects of disciplined software development on
the engineer’s ability to consistently and predictably pro-
duce quality results; Section 4 presents a collection of expe-
riences and lessons learned from different institutions in the
world who have used PSP and the TSP introductory course
as part of their curriculum; Section 5 presents a set of rec-
ommendations for teaching disciplined software develop-
ment based on the study’s observations and the lessons
learned from several institutions; Section 6 presents the
conclusions of this article.

2. Disciplined software development

Developing software and software-intensive systems in a
disciplined way requires a significant transition from craft-
based to engineering-style development. While mature
organizations widely aim at transitioning organizational
structures and procedures towards engineering-style soft-
ware development, it is also important to apply engineering
principles on the level of individual developers. One of the
reasons is that most methods applied in software develop-
ment are significantly human-based. As a consequence, the

Download English Version:

https://daneshyari.com/en/article/461778

Download Persian Version:

https://daneshyari.com/article/461778

Daneshyari.com

https://daneshyari.com/en/article/461778
https://daneshyari.com/article/461778
https://daneshyari.com

