
The Journal of Systems and Software 86 (2013) 2488– 2501

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me p age: www.elsev ier .com/ locate / j ss

Efficient optimization of large probabilistic models

Simon Strucka,∗, Matthias Güdemannb, Frank Ortmeiera

a AG Computer Systems in Engineering, Otto-von-Guericke University Magdeburg, Germany
b CONVECS, Inria Rhône-Alpes, Grenoble, France

a r t i c l e i n f o

Article history:
Received 30 July 2012
Received in revised form 7 March 2013
Accepted 20 March 2013
Available online 6 April 2013

Keywords:
Safety analysis
Formal methods
Multi-objective optimization
Safety optimization

a b s t r a c t

The development of safety critical systems often requires design decisions which influence not only
dependability, but also other properties which are often even antagonistic to dependability, e.g., cost.
Finding good compromises considering different goals while at the same time guaranteeing sufficiently
high safety of a system is a very difficult task.

We propose an integrated approach for modeling, analysis and optimization of safety critical sys-
tems. It is fully automated with an implementation based on the Eclipse platform. The approach is
tool-independent, different analysis tools can be used and there exists an API for the integration of differ-
ent optimization and estimation algorithms. For safety critical systems, a very important criterion is the
hazard occurrence probability, whose computation can be quite costly. Therefore we also provide means
to speed up optimization by devising different combinations of stochastic estimators and illustrate how
they can be integrated into the approach.

We illustrate the approach on relevant case-studies and provide experimental details to validate its
effectiveness and applicability.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many domains, software has become a major innovation fac-
tor. Very often different systems use the same standard hardware,
their difference is mainly due to different software implementa-
tions and features. Nowadays this trend not only holds for general
computers, laptops and tablets, but also for embedded systems and
cyber-physical systems.

Such systems are more and more used for safety critical appli-
cations in domains like avionics and automotive. Good examples
are the various “X-by-wire” systems which increasingly replace
traditional mechanical connections. For obvious reasons, one must
ensure the dependability and reliability of such systems before they
can be put in use.

Unfortunately the increasing complexity resulting from ever
more functionality realized in software renders safety analysis
more difficult. In contrast to mechanical systems, the effects of
failures in software are not continuous. For physical devices, most
often a small failure will have rather small effect; in contrast to
that, even a small software error can have completely unpredictable
effects. In addition, it is not sufficient to verify software in isolation

∗ Corresponding author. Tel.: +49 391 6719353.
E-mail addresses: simon.struck@ovgu.de (S. Struck),

matthias.gudemann@gmail.com (M. Güdemann), frank.ortmeier@ovgu.de
(F. Ortmeier).

of its environment, as it is done in classical software verification.
In any case, the effect of possible hardware errors must be taken
into account, as well as the physical environment where the system
will be used. Finally, even if an accurate analysis and evaluation of
an embedded system for a safety critical application is possible, it
is not obvious if this is the best possible system variant with spe-
cific properties. In general, different and often even antagonistic
objectives must be considered for the final system configuration.

A lot of work has been done to tackle the problem of qualitative
safety analysis for complex embedded systems where component
failures must be taken into account, e.g., see Åkerlund et al. (2006),
Bozzano et al. (2003), Bozzano and Villafiorita (2003), Ortmeier
et al. (2005), Distefano and Puliafito (2007), Walker et al. (2007).
These approaches allow for analysis of combinations of compo-
nent failures which may cause a potentially dangerous system
malfunction, called a hazard. For certification of a safety critical
system, it is important to conduct a quantitative safety analy-
sis computing the hazard occurrence probability. This is often
achieved using rather approximations based on qualitative anal-
ysis results and requires assumptions of stochastic independence.
Newer approaches like (Aljazzar et al., 2009; Bozzano et al., 2010;
Güdemann and Ortmeier, 2010b) compute hazard probabilities
directly, with a much higher degree of accuracy, but also with
higher computational cost. There also exist some first approaches
to optimize systems like (Meedeniya et al., 2010; Papadopoulos
et al., 2010) which try to find a system variant which is optimized,
in order to improve its reliability.

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.03.078

dx.doi.org/10.1016/j.jss.2013.03.078
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:simon.struck@ovgu.de
mailto:matthias.gudemann@gmail.com
mailto:frank.ortmeier@ovgu.de
dx.doi.org/10.1016/j.jss.2013.03.078

S. Struck et al. / The Journal of Systems and Software 86 (2013) 2488– 2501 2489

The approach presented in this article consists of the follow-
ing: we propose to use the safety analysis and modeling language
(SAML) (Güdemann and Ortmeier, 2010a) to model safety critical
systems, allowing for qualitative and quantitative safety analysis
on the same model, i.e., without the need to construct different
models for each of the different analyses. We extend SAML to sup-
port the specification of a set of possible systems and of different
objective functions for optimization. Modern multi-objective opti-
mization algorithms, including means to reduce computation time,
are used to find the best possible system variants. All analyses are
conducted fully automatic using different state-of-the art model
checking tools. The approach is tool-independent, it uses model
transformations to convert SAML models into the input specifica-
tion language of analysis tools which allows for easy integration of
new analysis tools. All this is integrated into an extensible frame-
work based on the Eclipse platform. The work presented here is an
extension of our first, rather ad-hoc approach to safety optimiza-
tion, presented in Güdemann and Ortmeier (2011a). We now have
developed an explicit notion of variability modeling and provide an
interface for arbitrary objective functions and for arbitrary estima-
tion methods. We also present the results of our experiments using
different approaches to exploit estimation techniques to make the
optimization process more efficient.

2. Modeling

Our approach is based on creating a model of the system with its
intended functional behavior, the behavior of its surrounding phys-
ical environment and the occurrence pattern and effect of failure
modes.

We use a rather low level modeling language to express
our models. The safety analysis and modeling language (SAML)
(Güdemann and Ortmeier, 2010a) is derived from the PRISM mod-
eling language (Norman et al., 2010) and describes Markov decision
processes (MDP) (de Alfaro et al., 2005). This formal model allows
the combination of software modeling, where failure modes are
often non-deterministic and physical component modeling, where
failure modes are often probabilistic. It is also possible to com-
bine per-time and per-demand failure mode modeling with high
accuracy (Güdemann and Ortmeier, 2010b). Model transformations
allow the analysis with different verification tools, dependent on
the desired properties.

We chose SAML, as it is very close to the underlying formal
model and therefore does not introduce much overhead into the
state space. Nevertheless, it is possible to transform higher-level
models to SAML for analysis. For an outline of that approach see
Güdemann and Ortmeier (2011b) and some discussion of such pos-
sibilities in Section 6. The following description of SAML is adapted
from Güdemann (2011).

2.1. MDP/SAML

The most important aspect in the development of SAML was the
possibility to model the control software, the physical environment
and possible failure modes. These are all relevant for embedded sys-
tems in a safety critical domain. A SAML model is then analyzed
using state-of-the-art verification engines, using proven correct
model-transformation. In most cases, a SAML model consists of a
model of the nominal behavior, an accurate model of the behavior
of its physical environment and probabilistic failure mode model-
ing. Non-deterministic behavior facilitates specification of software
failure modes and environment modeling, where probabilities are
not known or cannot be given. Probabilistic behavior often reflects
well physical environment modeling with known probabilities and
failure modes of physical components.

Fig. 1. Basic SAML syntax.

Syntactically, SAML models describe sets of finite state automata
with non-deterministic and probabilistic transitions. These are exe-
cuted in a synchronous parallel fashion with discrete time-steps.
SAML has been designed to be tool-independent and as simple
as possible, while being expressible enough for convenient mod-
eling of larger case-studies. It has been implemented using the
ANTlr framework with an Eclipse-based specification front-end.
Automatic model transformations for well-known model checkers
(NuSMV, PRISM) also exist. For space restrictions, we do not present
the complete formal syntax and semantics here. The complete def-
initions can be found here (Güdemann and Ortmeier, 2010a).

The grammar rules for the syntax of the most important part
of SAML is shown in Fig. 1 in Extended Backus Naur Form (EBNF)
notation.1 The actual implementation is done using the ANTlr
parser generator (Parr, 2007). The syntax is derived from the input
language of the PRISM model checker (Kwiatkowska et al., 2002;
Norman et al., 2010). The main differences to the PRISM language
are the absence of synchronization labels and the explicit model-
ing of non-deterministic choices with the choice keyword. These
changes were done to facilitate the correct constructions for formal
safety analysis. It forces the user to adhere to the modeling guide-
line which results in SAML models for which the presented safety
analysis is sound. In contrast, PRISM uses implicit non-determinism
modeling, i.e., overlapping activation conditions. In the case of only
a partial overlap, the probability distributions must be normalized
which potentially changes the intention of the user. Therefore we
chose to make non-determinism modeling explicit and treat over-
lapping activation conditions as modeling error.

Fig. 2 shows an example SAML model, consisting of two mod-
ules, A and B. Module A contains the state variable V A with a value

1 Lexer rules are written uppercase, parser rules in lowercase. Bold font indicates
keywords or literal symbols without explicit lexer rules.

Download	English	Version:

https://daneshyari.com/en/article/461787

Download	Persian	Version:

https://daneshyari.com/article/461787

Daneshyari.com

https://daneshyari.com/en/article/461787
https://daneshyari.com/article/461787
https://daneshyari.com/

