
The Journal of Systems and Software 86 (2013) 2520– 2541

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me p age: www.elsev ier .com/ locate / j ss

S-IDE: A tool framework for optimizing deployment architecture of High Level
Architecture based simulation systems

Turgay Ç elika,∗, Bedir Tekinerdoganb

a Department of Computer Engineering, Hacettepe University, Ankara, Turkey
b Department of Computer Engineering, Bilkent University, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 30 June 2012
Received in revised form 27 February 2013
Accepted 1 March 2013
Available online 20 March 2013

Keywords:
Deployment model optimization
Metamodel based tool development
Distributed simulation
High Level Architecture (HLA)
FEDEP
Software architecture
Model transformations
Metamodeling

a b s t r a c t

One of the important problems in High Level Architecture (HLA) based distributed simulation systems
is the allocation of the different simulation modules to the available physical resources. Usually, the
deployment of the simulation modules to the physical resources can be done in many different ways,
and each deployment alternative will have a different impact on the performance. Although different
algorithmic solutions have been provided to optimize the allocation with respect to the performance, the
problem has not been explicitly tackled from an architecture design perspective. Moreover, for optimizing
the deployment of the simulation system, tool support is largely missing. In this paper we propose a
method for automatically deriving deployment alternatives for HLA based distributed simulation systems.
The method extends the IEEE Recommended Practice for High Level Architecture Federation Development
and Execution Process by providing an approach for optimizing the allocation at the design level. The
method is realized by the tool framework, S-IDE (Simulation-IDE) that we have developed to provide
an integrated development environment for deriving a feasible deployment alternative based on the
simulation system and the available physical resources at the design phase. The method and the tool
support have been validated using a case study for the development of a traffic simulation system.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Simulation systems are used to simulate real world concepts
in different domains such as manufacturing, performance analysis,
decision support, virtual exercises and entertainment. There are
different reasons for using simulation systems including analysis
and testing, cost reduction in development, training, etc. Due to
the complexity of the simulated domain very often the simulation
is executed across multiple nodes and likewise several different
simulators are integrated within a single distributed simulation
environment. The reason for distributing the simulation is usu-
ally for reducing the execution time of the simulation, enabling
geographic distribution of simulation parts, and enabling large sim-
ulations with a large number of users (Fujimoto, 1999).

Developing distributed simulation systems is not easy because
different simulators might run on different platforms, adopt dif-
ferent data types, use different communication mechanisms, etc.
Hence, an important challenge in distributed simulation systems is
the integration, reusability and interoperability of the various sim-
ulators. To reduce the effort for developing distributed simulations,
several standard simulation infrastructures have been introduced

∗ Corresponding author. Tel.: +90 505 476 8307.
E-mail address: turgaycelik@gmail.com (T. Ç elik).

including Distributed Interactive Simulation (DIS) (IEEE, 1998),
High Level Architecture (HLA) (Kuhl et al., 1999; IEEE, 2010a),
and Test and Training Enabling Architecture (TENA) (Noseworthy,
2008). Among these, HLA is an important IEEE and NATO standard
specifies a general purpose simulation architecture for realizing
interoperable and reusable distributed computer simulation sys-
tems (Kuhl et al., 1999; IEEE, 2010a).

One of the important problems in HLA based distributed simu-
lation systems is the allocation of the different simulation modules
to the available physical resources. Each deployment alternative
represents a different allocation of modules to physical resources
and this can be done in many different ways. Further, each deploy-
ment alternative will have a different impact on the performance.
This problem can be categorized as a task allocation problem that
has been widely addressed in the literature (Stone, 1977; Lo, 1988;
Pirim, 2006; Mehrabi et al., 2009). To solve the task allocation prob-
lem different algorithmic solutions have been proposed. Hereby,
the algorithms take as input several optimization parameters such
as execution cost, communication cost, memory requirement and
I/O cost. Based on these input parameters the task allocation algo-
rithms aim to derive feasible allocation of tasks to processors
(Stone, 1977; Lo, 1988). The evaluation of the deployment alter-
native is usually based on expert judgment and postponed to the
implementation phase. One cannot always rely on expert judgment
because finding experts that have both a broad and specialized

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.03.013

dx.doi.org/10.1016/j.jss.2013.03.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:turgaycelik@gmail.com
dx.doi.org/10.1016/j.jss.2013.03.013

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2521

knowledge on the corresponding domains is not easy. Further,
human expert judgments can be feasible for small to medium sys-
tems but are inadequate for large and complex systems. Moreover,
postponing the evaluation of the deployment alternative to the
implementation phase, might lead to non-feasible implementa-
tions which may require unnecessary iteration of the design and
the related project lifecycle artifacts such as detailed design, imple-
mentation, test artifacts, documentation, etc. On its turn this will
lead to delays in the project schedule and increased cost due to the
unnecessary rework of the lifecycle artifacts.

The need for early analysis and optimization of the deployment
alternatives has also been addressed by the IEEE Recommended
Practice for High Level Architecture Federation Development
and Execution Process FEDEP (IEEE, 2003). FEDEP describes rec-
ommended tasks for evaluating alternative design options and
estimating the simulation performance in design phase but delib-
erately does not provide a detailed process and implementation for
the indicated tasks.

To cope with the above problems and address the needs as
addressed by FEDEP, we propose a method and our tool frame-
work S-IDE (Simulation-IDE) that supports the early analysis of
deployment alternatives and the automatic generation of the
deployment alternatives for HLA based distributed simulation sys-
tems. S-IDE tool framework consists of several tools based on
metamodels that we have developed including Federation Data
Exchange Metamodel, Simulation Modules and Publish–Subscribe
Relations Metamodel, Physical Resources Metamodel, Simulation
Execution Configuration Metamodel, and Deployment Metamodel.
Based on the design models developed with these tools, the neces-
sary parameter values for the task allocation algorithms are defined,
which are then used for automatic generation of a feasible deploy-
ment alternative. In addition, the tool framework can be used for
design level analysis including, the impact of adding new simu-
lations modules to the system, suitability of the selected physical
resources for the given simulation design, and the impact of the
change of publish–subscribe relations. To illustrate the usage of the
method and S-IDE we have used a realistic case study concerning
the development of a traffic simulation.

The remainder of the paper is organized as follows. In Section 2
we provide the background on HLA and Model Driven Engineering
(MDE). Section 3 defines the problem statement based on a case
study that will be used in subsequent sections. Section 4 presents
the method for evaluating alternative design options briefly. Sec-
tion 5 describes the metamodels that S-IDE tool framework is built
on. Section 6 presents the model transformations step by step for
deriving feasible deployment alternatives. Section 7 provides real-
ization of S-IDE tool framework and using S-IDE to derive a feasible
deployment alternative for the case study. Section 8 provides the
evaluation of the tool. Section 9 provides the discussion. Section
10 describes the related work and finally we conclude the paper in
Section 11.

2. Preliminaries

In this section we describe the background for understanding
and supporting the approach that we present in this paper. In Sec-
tion 2.1 we present a brief definition of the High Level Architecture
(HLA), followed by a short overview of Model-Driven Engineering
(MDE) in Section 2.2.

2.1. High Level Architecture (HLA)

As stated before, HLA is an IEEE standard that supports develop-
ment of reusable and interoperable distributed simulation systems
(Kuhl et al., 1999; IEEE, 2010a,b,c). To support the development of

Centra l Infras tructure

Node

<<Infras tructure>>

Centra l RTI

Component (CRC)

Simula tion Node

1..* 0..1

 Federa te

<<Infras tructure>>

Loca l RTI Component

(LRC)

Simula tion Module

Ins tance

Fig. 1. Reference architecture for the high level architecture.

HLA compliant simulation systems, the “Federation Development
and Execution Process – FEDEP” has been defined as a part of HLA
standard (IEEE, 2003).

Based on a domain analysis to HLA standard we could derive
the reference architecture of HLA based simulation systems which
is shown in Fig. 1. A typical simulation system is deployed on a
number of Simulation Nodes. Each Simulation Node includes one or
more Federates which are processes that together form the sim-
ulation execution. Each member includes a number of Simulation
Module Instances and Local RTI Component (LRC). Simulation Mod-
ule Instances represent objects for simulating entities or events
in the simulation. RTI represents the runtime infrastructure that
realizes the HLA standard (IEEE, 2010a). LRC enables bi-directional
interaction between federates for data exchange and collaborative
execution of the simulation.

The simulation may also include an optional Central Infrastruc-
ture Node that contains Central RTI Component (CRC) which is
responsible for managing the simulation lifecycle, timing, synchro-
nization, and discovery concerns. Although this component is not
mandatory, as a convention, major RTI implementations provide
CRC definitions. In case CRC is missing, the services need to be sup-
ported by the LRCs. As such both the LRC and CRC provide similar
services. In Fig. 1 this is indicated through the stereotype «Infra-
structure».

The CRC and LRC implementations together provide services
for federation management, declaration management, object man-
agement, ownership management, time management, and data
distribution management (IEEE, 2010b).

The basic interaction model that is adopted in the HLA con-
forms to the Publish/Subscribe pattern (Eugster et al., 2003). In
the Publish/Subscribe pattern the producer and consumer appli-
cations (members) are decoupled. This increases the reusability
and interoperability, which are key concerns in simulation systems.
The Publish/Subscribe interaction is realized by the «Infrastructure»
components in the reference architecture in Fig. 1. Federates in
the simulation execution can publish and subscribe data exchange
model elements through the services provided by the «Infrastruc-
ture» components. HLA standard defines the Object Model Template
(OMT) that can be used to define different data exchange models
which are called Federate Object Model (FOM) and Simulation Object
Model (SOM) (IEEE, 2010c).

2.2. Model Driven Engineering (MDE)

In traditional, non-model-driven software development the link
between the code and higher level design models is not formal
but intentional. Required changes are usually addressed manually
using the given modeling language. Because of the manual adap-
tation the maintenance effort is not optimal and as such sooner or
later the design models become inconsistent with the code since
changes are, in practice, defined at the code level. One of the key
motivations for introducing model-driven engineering (MDE) is the

Download English Version:

https://daneshyari.com/en/article/461789

Download Persian Version:

https://daneshyari.com/article/461789

Daneshyari.com

https://daneshyari.com/en/article/461789
https://daneshyari.com/article/461789
https://daneshyari.com

