

Contents lists available at ScienceDirect Journal of Mathematical Analysis and **Applications**

www.elsevier.com/locate/imaa

Existence of positive periodic solutions of nonlinear first-order delayed differential equations

Ruyun Ma*, Ruipeng Chen, Tianlan Chen¹

Department of Mathematics, Northwest Normal University, Lanzhou 730070, PR China

ARTICLE INFO	A B S T R A C T
Article history: Received 18 January 2011 Available online 7 June 2011 Submitted by R. Manásevich	We consider the existence of positive ω -periodic solutions for the equation
	$u'(t) = a(t)g(u(t))u(t) - \lambda b(t)f(u(t - \tau(t))),$
Keywords: Positive ω-periodic solutions Existence Fixed point index	where $a, b \in C(\mathbb{R}, [0, \infty))$ are ω -periodic functions with $\int_0^{\omega} a(t) dt > 0$, $\int_0^{\omega} b(t) dt > 0$; $f, g \in C([0, \infty), [0, \infty))$ and $f(s) > 0$ for $s > 0$; τ is a continuous ω -periodic function; $\lambda > 0$ is a parameter. The proofs of our main results are based upon fixed point index theory.
Cones	© 2011 Elsevier Inc. All rights reserved.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there has been considerable interest in the existence of periodic solutions of the following equation

$$u'(t) = a(t)g(u(t))u(t) - \lambda b(t)f(u(t - \tau(t))),$$
(1.1)

where $a, b \in C(\mathbb{R}, [0, \infty))$ are ω -periodic functions, $\int_0^{\omega} a(t) dt > 0$, $\int_0^{\omega} b(t) dt > 0$, τ is a continuous ω -periodic function. (1.1) has been proposed as a model for a variety of physiological processes and conditions including production of blood cells, respiration, and cardiac arrhythmias. See, for example, [1-13] and the references therein.

The existence results in the literature are largely based on the assumption that there exist two positive constants l and L, such that

$$0 < l \le g(u) \le L. \tag{1.2}$$

It is interesting to know whether there is a positive solution of (1.1) when g does not satisfy (1.2). Very recently, lin and Wang [13] studied the existence of positive ω -periodic solutions of the spectral equation

$$u'(t) = a(t)e^{u(t)}u(t) - \lambda b(t)f(u(t - \tau(t)))$$
(1.3)

under the assumptions:

(H1) $a, b \in C(\mathbb{R}, [0, \infty))$ are ω -periodic functions, $\int_0^{\omega} a(t) dt > 0$, $\int_0^{\omega} b(t) dt > 0$, τ is a continuous ω -periodic function, g: $[0,\infty) \rightarrow [0,\infty)$ is continuous;

(H2) $f \in C([0, \infty), [0, \infty))$ and f(s) > 0 for s > 0;

^{*} Corresponding author.

E-mail address: mary@nwnu.edu.cn (R. Ma).

¹ Supported by the NSFC (No. 11061030), the Fundamental Research Funds for the Gansu Universities.

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.06.003

(H3) $\sigma := e^{-\int_0^{\omega} a(t) dt} < 1$, and for r > 0,

$$m(r) := \min\left\{f(u): \frac{\sigma^{e^r}(1-\sigma)}{1-\sigma^{e^r}} r \leqslant u \leqslant r\right\} > 0.$$

They proved the following

Theorem A. Assume that (H1)–(H3) hold and $\lim_{u\to 0^+} \frac{f(u)}{u} = 0$. Then for each L > 0, there exists a $\lambda_0 > 0$ such that (1.3) has a positive ω -periodic solution u with $\sup_{t \in [0,\omega]} u(t) \leq L$ for $\lambda > \lambda_0$.

It is easy to see that the function $g(u) = e^u$ satisfies

$$1 \leqslant e^u < \infty. \tag{14}$$

Of course, natural questions are

Q1. Whether or not a similar result can be proved under the more general condition

$$0 < l \le g(u) < \infty? \tag{1.5}$$

Q2. Whether or not a similar result can be proved under the more general condition

$$0 < g(u) \leqslant L? \tag{1.6}$$

Q3. Under the assumptions (1.5) or (1.6), what will happen if we replace the assumption " $f_0 = 0$ " with one of the assumptions: $f_0 = \infty$, $f_\infty = 0$, $f_\infty = \infty$, where

$$f_0 = \lim_{u \to 0} \frac{f(u)}{u}, \qquad f_\infty = \lim_{u \to \infty} \frac{f(u)}{u}?$$

In this paper, we will give positive answers to Q1 and Q2, and give a partial answer to Q3. More precisely, in Sections 2–3, we will prove the existence of positive ω -periodic solutions for (1.1) under (1.5) and f satisfying one of the following conditions:

$$f_0 = 0, \qquad f_0 = \infty. \tag{1.7}$$

Sections 4–5 are devoted to studying the existence of positive ω -periodic solutions for (1.1) under (1.6) and one of the following conditions:

$$f_0 = 0, \qquad f_0 = \infty. \tag{1.8}$$

However, we give no any information on the existence of positive ω -periodic solutions for (1.1) in the four following cases:

(i) (1.5) holds and $f_{\infty} = \infty$; (ii) (1.5) holds and $f_{\infty} = 0$; (iii) (1.6) holds and $f_{\infty} = 0$; (iv) (1.6) holds and $f_{\infty} = \infty$.

-

The following well-known result of the fixed point index is crucial in our arguments.

Theorem B. (See [14–16].) Let *E* be a Banach space and *K* a cone in *E*. For r > 0, define $K_r = \{u \in K : ||u|| < r\}$. Assume that $T : \tilde{K}_r \to K$ is completely continuous such that $Tu \neq u$ for $u \in \partial K_r = \{u \in K : ||u|| = r\}$.

(i) If ||Tu|| > ||u|| for $u \in \partial K_r$, then

$$i(T, \bar{K}_r, K) = 0.$$

(ii) If ||Tu|| < ||u|| for $u \in \partial K_r$, then

$$i(T, \bar{K}_r, K) = 1.$$

Finally, let us denote that for each fixed constant $\rho > 0$,

$$h^*(\rho) := \max\{g(s) \mid 0 \leqslant s \leqslant \rho\},\tag{1.9}$$

$$h_*(\rho) := \min\{g(s) \mid 0 \leqslant s \leqslant \rho\}.$$

$$(1.10)$$

Download English Version:

https://daneshyari.com/en/article/4618009

Download Persian Version:

https://daneshyari.com/article/4618009

Daneshyari.com