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The Newtonian Euler–Poisson equations with attractive forces are the classical models
for the evolution of gaseous stars and galaxies in astrophysics. In this paper, we use
the integration method to study the blowup problem of the N-dimensional system with
adiabatic exponent γ > 1, in radial symmetry. We could show that the C1 non-trivial
classical solutions (ρ, V ), with compact support in [0, R], where R > 0 is a positive
constant with ρ(t, r) = 0 and V (t, r) = 0 for r � R , under the initial condition

H0 =
R∫

0

rn V 0 dr >

√
2R2n−N+4M

n(n + 1)(n − N + 2)
(1)

with an arbitrary constant n > max(N − 2,0) and the total mass M , blow up before a finite
time T for pressureless fluids or γ > 1. Our results could fill some gaps about the blowup
phenomena to the classical C1 solutions of that attractive system with pressure under the
first boundary condition. In addition, the corresponding result for the repulsive systems
is also provided. Here our result fully covers the previous case for n = 1 in [M.W. Yuen,
Blowup for the Euler and Euler–Poisson equations with repulsive forces, Nonlinear Anal. 74
(2011) 1465–1470].

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The compressible isentropic Euler (δ = 0) or Euler–Poisson (δ = ±1) equations can be written in the following form:⎧⎨
⎩

ρt+∇ · (ρu) = 0,

ρ
[
ut + (u · ∇)u

]+∇ P = ρ∇Φ,

�Φ(t, x) = δα(N)ρ

(2)

where α(N) is a constant related to the unit ball in RN : α(1) = 1; α(2) = 2π and for N � 3,

α(N) = N(N − 2)Vol(N) = N(N − 2)
π N/2

	(N/2 + 1)
, (3)

where Vol(N) is the volume of the unit ball in RN and 	 is a Gamma function. As usual, ρ = ρ(t, x) � 0 and u = u(t, x) ∈ RN

are the density and the velocity respectively. P = P (ρ) is the pressure function. The γ -law for the pressure term P (ρ) could
be applied:
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P (ρ) = Kργ (4)

which the constant γ � 1. If K > 0, we call the system with pressure; if K = 0, we call it pressureless.
When δ = −1, the system is self-attractive. Eqs. (2) are the Newtonian descriptions of gaseous stars or a galaxy in as-
trophysics [2] and [4]. When δ = 1, the system is the compressible Euler–Poisson equations with repulsive forces. It can
be used as a semiconductor model [6]. For the compressible Euler equation with δ = 0, it is a standard model in fluid
mechanics [16]. And the Poisson equation (2)3 could be solved by

Φ(t, x) = δ

∫
RN

G(x − y)ρ(t, y)dy (5)

where G is Green’s function:

G(x)
.=

⎧⎪⎨
⎪⎩

|x|, N = 1,

log |x|, N = 2,
−1

|x|N−2 , N � 3.

(6)

Here, the solutions in radial symmetry could be:

ρ = ρ(t, r) and u = x

r
V (t, r) =: x

r
V (7)

with the radius r = (
∑N

i=1 x2
i )

1/2.
The Poisson equation (2)3 becomes

rN−1Φrr(t, x) + (N − 1)rN−2Φr = α(N)δρrN−1, (8)

Φr = α(N)δ

rN−1

r∫
0

ρ(t, s)sN−1 ds. (9)

By standard computation, the systems in radial symmetry can be rewritten in the following form:{
ρt + V ρr + ρVr + N − 1

r
ρV = 0,

ρ(Vt + V Vr) + Pr(ρ) = ρΦr(ρ).

(10)

In literature for constructing analytical solutions for these systems, interested readers could refer to [13,17,10,22,24]. The
local existence for the systems can be found in [16,18,1,12]. The analysis of stabilities for the systems may be referred to
[11,19–21,9,10,23,3,7,25].

In literature for showing blowup results for the solutions of these systems, Makino, Ukai and Kawashima firstly defined
the tame solutions [19] for outside the compact of the solutions

Vt + V Vr = 0. (11)

After this, Makino and Perthame continued the blowup studies of the “tame” solutions for the Euler system with gravita-
tional forces [20]. Then Perthame proved the blowup results for 3-dimensional pressureless system with repulsive forces
[21] (δ = 1). In fact, all these results rely on the solutions with radial symmetry:

Vt + V Vr=α(N)δ

rN−1

r∫
0

ρ(t, s)sN−1 ds. (12)

And the Emden ordinary differential equations were deduced on the boundary point of the solutions with compact support:

D2 R

Dt2
= δM

RN−1
, R(0, R0) = R0 � 0, Ṙ(0, R0) = 0 (13)

where dR
dt := V and M is the mass of the solutions, along the characteristic curve. They showed the blowup results for the

C1 solutions of the system (10).
In 2008 and 2009, Chae, Tadmor and Cheng in [3] and [7] showed the finite time blowup, for the pressureless Euler–

Poisson equations with attractive forces (δ = −1), under the initial condition,

S := {
a ∈ RN

∣∣ ρ0(a) > 0, Ω0(a) = 0, ∇ · u
(
0, x(0)

)
< 0

} �= φ (14)

where Ω is the rescaled vorticity matrix (Ω0 i j) = 1
2 (∂iu

j
0 − ∂ jui

0) with the notation u = (u1, u2, . . . , uN ) in their paper and
some point x0.



Download	English	Version:

https://daneshyari.com/en/article/4618272

Download	Persian	Version:

https://daneshyari.com/article/4618272

Daneshyari.com

https://daneshyari.com/en/article/4618272
https://daneshyari.com/article/4618272
https://daneshyari.com/

