
The Journal of Systems and Software 84 (2011) 1114–1129

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Procedural security analysis: A methodological approach

Komminist Weldemariam ∗, Adolfo Villafiorita
Center for Scientific and Technological Research, Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy

a r t i c l e i n f o

Article history:
Received 22 May 2010
Received in revised form
15 December 2010
Accepted 31 January 2011
Available online 1 March 2011

Keywords:
Security assessment
Formal specification and verification
Electronic voting

a b s t r a c t

This article introduces what we call procedural security analysis, an approach that allows for a systematic
security assessment of (business) processes. The approach is based on explicit reasoning on asset flows
and is implemented by building formal models to describe the nominal procedures under analysis, by
injecting possible threat-actions of such models, and by assuming that any combination of threats can
be possible in all steps into such models. We use the NuSMV input language to encode the asset flows,
which are amenable for formal analysis. This allows us to understand how the switch to a new techno-
logical solution changes the requirements of an organization, with the ultimate goal of defining the new
processes that ensure a sufficient level of security.

We have applied the technique to a real-world electronic voting system named ProVotE to analyze
the procedures used during and after elections. Such analyses are essential to identify the limits of the
current procedures (i.e., conditions under which attacks are undetectable) and to identify the hypotheses
that can guarantee reasonably secure electronic elections. Additionally, the results of the analyses can be
a step forward to devise a set of requirements, to be applied both at the organizational level and on the
(software) systems to make them more secure.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Often risks and attacks not only depend upon the security levels
software and hardware systems offer, but also on the procedures
and controls regulating the way in which they are operated. In
such cases, introducing technical security mechanisms—such as
Adida (2006), Sastry et al. (2006) and Yee (2007)—is not sufficient.
To fill this gap, we focus on the definition of methodologies and
techniques to model and formally verify procedures and systems
processes. This requires not only the definition of adequate mod-
eling convention, but also the definition of general techniques for
the injection of attacks, and for the transformation of business pro-
cesses into representations which can be given as input to model
checkers. For this purpose, we have defined a methodology that
allows one to perform security assessment on the procedures. The
underlying approach that we follow lies on the intersection of three
areas, namely, Business Process Engineering and Re-engineering
(BPR), security, and formal methods.

1.1. Motivation

We all take actions to avoid security risks in our daily life. They
may be as simple as locking the office door when leaving for a day.

∗ Corresponding author.
E-mail addresses: sisai@fbk.eu, komminist@gmail.com (K. Weldemariam).

For our home computer, maybe it is sufficient to activate the fire-
wall and keep updated on relevant security patches. The situation
becomes more complex and difficult if the system we need to pro-
tect is a major information system that performs critical steps of
complex business processes, whose execution might also require
several manual actions to be carried out.1 This is exactly the case
of (voting and) e-voting: even in those countries that have adopted
a high level of automation, procedures and controls performed by
people on physical assets (e.g., printouts of the digital votes) remain
an integral and unavoidable part.

In order to ensure a sufficient level of security, therefore, there
is a need for a thorough security risk analysis methodology that
considers procedures as part of the modeling and analysis process.
The approaches discussed so far, e.g., Fovino and Masera (2006),
Basin et al. (2003) and Hogganvik (2007), say little or are otherwise
ineffective on these procedurally rich scenarios. With “procedurally
rich” we denote situations in which software systems are just part
of a complex organizational setting, in which procedures have to be
executed on security-critical assets that belong both to the digital
and physical realms.

We address (some of) the issues above by dealing with the iden-
tification, modeling, establishment, and enforcement of security
policies about the procedures that regulate access and manipula-

1 In the rest of the paper we use the terms business processes, processes, proce-
dures, and workflows as synonyms.

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.01.064

dx.doi.org/10.1016/j.jss.2011.01.064
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:sisai@fbk.eu
mailto:komminist@gmail.com
dx.doi.org/10.1016/j.jss.2011.01.064


K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1115

Fig. 1. A reference scenario for procedural security analysis.

tion of critical assets. The breach of security objectives during the
execution of the procedures or usage of systems is known as threat
to the procedures (or procedural threats). We call procedural secu-
rity analysis the process of understanding the impact and effects of
procedural threats, namely courses of actions that can take place
during the execution of the procedures, and which are meant to
alter, in an unlawful way, the assets manipulated by procedures.

The reference scenario is shown in Fig. 1. Our target of evalu-
ation, a term borrowed from Common Criteria (Common Criteria,
2007), is a (complex) organizational setting in which procedures
transform and elaborate assets. Assets might be made of bits (such
as, for instance, an electronic vote stored in a voting machine) or live
in the physical world (like, for instance, the paper trail of a voting
machine). The procedures and organization are meant to add value
to the assets and protect valuable assets from attacks. Think, for
instance, of paper ballots: before an election a ballot is a replace-
able piece of paper.2 After a vote has been cast, the same ballot
represents the decision of a voter, that needs to be appropriately
accounted for and protected.

Attacks in our model might either come from external sources
or from insiders, as shown in the figure, where the shaded actors
represent a set of adversaries, whereas the non-shaded represent
trusted actors.

We distinguish, in particular, the following kinds of attacks:

1. Attacks on digital assets (item 1 and item 3 in Fig. 1). These attacks
are meant to alter one or more digital assets of an organiza-
tion. Attacks can either be carried out by external sources (the
environment), by internal sources, or a combination of both.
Opportunities for attacks are determined by the organizational
setting and by the security provided by the digital systems. At
attacker, in fact, might need to get access to a digital resource
(possibly by circumventing existing control procedures) and
overcome the software/hardware protections put in place to
protect the digital assets.

2. Attacks on other kind of assets (item 2 and item 4 in Fig. 1). These
attacks are meant to alter one or more non-digital assets of
an organization. Attacks can either be carried out by external
sources (the environment), by internal sources, or by a combi-
nation of both. Opportunities for attacks are determined by the
organizational settings only. The attacks may lead to compro-
mise digital assets as well (e.g., stealing a password provides
access to digital assets).

Existing security assessment methodologies, like Fovino and
Masera (2006) and Hogganvik (2007), usually focus on understand-

2 Simplifying quite a bit. In fact, by stealing a blank ballot it is possible to imple-
ment an attack that allows to control voters.

ing items 1 and 3, namely, types and effects of attacks on (software)
systems. We propose a tool-supported methodology to tackle also
points 2 and 4, namely attacks on assets that are not necessar-
ily digital and that derive from the way in which procedures are
implemented and carried out.

1.2. Technical elements of the approach

In order to achieve the goal stated above, we approach the prob-
lem by reasoning about the procedures and controls that regulate
the usage of systems:

• Provide models of the procedures under evaluation. During which
we provide models that describe the procedure or procedures to
be analyzed. In order to ease the task of translating the models
into executable assets flows, we stick to a subset of the Unified
Modeling Language (UML) notations (Booch et al., 2005).

• Extend model. During which we generate an extended model from
the models defined in the previous step. The extended model is
generated by injecting3 threat actions into the nominal flow of
the procedures. Thus, in the extended model, not only assets are
modified according to what the procedures define, but they can
also be transformed by the (random) execution of one or more
threat actions.

• Encode the asset flows. During which we transform the model
obtained at the previous step into asset-flows—namely exe-
cutable specification written in the NuSMV input language
(Cimatti et al., 2002), that describe the evolution of assets. The
NuSMV model of the asset flows is based on the definition
of program counters that ensure that procedures are executed
according to the specifications, and by defining one module per
asset with one state variable per asset feature. The state variables
encode how features change during the execution of the proce-
dures. Accessory information, such as actors responsible for the
different activities can be used, e.g., to enrich the language used
to express security properties. The necessity of modeling actors
roles in NuSMV depends upon the target of the security analysis.

• Specify security properties to model check. During which we spec-
ify the (un-)desired (procedural) security properties—namely,
the security goals that have to be satisfied or violated are then
encoded using Linear Temporal Logic (LTL) or Computational
Tree Logic (CTL) (Pnueli, 1977) formulas. These, together with
the model, are given as input to NuSMV.

• Perform analysis and results analysis. During which we run the
model checker to perform analyses. If a property is proved to be
false, NuSMV generates a counterexample which opens up fur-
ther discussion. Counterexamples of security properties encode
the sequence of actions that have to be executed in order to carry
out an attack on an asset.

With this approach analyzing attacks is reduced to a model
checking problem in which the required final state of some key
assets is expressed using LTL/CTL and the counterexample gen-
erated by executing the extended model contains the sequence of
threat-actions causing the final state not to be reached. The model
checker takes care of pruning useless threats, namely threats which
do not lead to any successful attack. Analogously to what happens
in safety analysis when analyzing, e.g., the loss of critical functions,
enhancing the procedures results in reducing the probability of an
attack or making the attack more complex, rather than eliminating

3 Note that by fault injection we mean the extension of the assets-flow model
with a specification of the possible threat-actions. We adopt this terminology, which
is standard in safety analysis, even though it may not be fully appropriate in our
domain. See, e.g., Bozzano and Villafiorita (2007).



Download English Version:

https://daneshyari.com/en/article/461872

Download Persian Version:

https://daneshyari.com/article/461872

Daneshyari.com

https://daneshyari.com/en/article/461872
https://daneshyari.com/article/461872
https://daneshyari.com

