The Journal of Systems and Software 84 (2011) 1233-1243

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

St

L

Iy
AT

Controversy Corner

An empirical study of software architectures’ effect on product quality

Klaus Marius Hansen®*, Kristjan JonassonP?, Helmut Neukirchen®

3 Department of Computer Science, University of Copenhagen, Njalsgade 128, Building 24, Floor 5, 2300 Kebenhavn S, Denmark
b Department of Computer Science, University of Iceland, Semundargotu 2, 101 Reykjavik, Iceland

ARTICLE INFO ABSTRACT

Article history:

Received 19 July 2010

Received in revised form 1 December 2010
Accepted 20 February 2011

Available online 5 March 2011

Software architecture is concerned with the structure of software systems and is generally agreed to influ-
ence software quality. Even so, little empirical research has been performed on the relationship between
software architecture and software quality. Based on 1141 open source Java projects, we calculate three
software architecture metrics (measuring classes per package, normalized distance, and a new metric

introduced by us concerning the excess of coupling degree) and analyze to which extent these metrics

Keywords:

Software architecture
Metrics

Product quality
Empirical study

measures.

are related to product metrics (defect ratio, download rate, methods per class, and method complexity).
We conclude that there are a number of significant relationships between product metrics and archi-
tecture metrics. In particular, the number of open defects depends significantly on all our architecture

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

It is often claimed that software architecture enables (or
inhibits) software quality (cf. e.g., Perry and Wolf, 1992; Garlan and
Shaw, 1993). An example would be that an architectural choice
of a specific, relational database for an application implies qual-
ity constraints on performance, modifiability, etc. However, this
claim has not been extensively validated empirically. While much
work has focused on measuring software quality, little has focused
on measuring software architecture. In the work described here,
we investigated the software architecture of open source software
projects, defined metrics for software architecture, and analyzed to
which extent they correlated with software quality metrics. Specif-
ically, the data that we collected was meta-data on 21,904 projects
and source code from 1570 of these. All projects are Java projects
and hosted on the SourceForge! repository. Based on the meta-data
and source code, we computed and analyzed the results of vari-
ous metrics. Our objective was to compare software architectures
and product quality according to various perspectives on software
quality.

Our main contributions are a new metric for modeling of cou-
pling and the actual empirical study of software architectures’
effect on product quality including the analysis of relationship
between individual metrics using uni- and multi-variate models.

* Corresponding author.
E-mail addresses: klausmh@diku.dk (K.M. Hansen), jonasson@hi.is (K. Jonasson),
helmut@hi.is (H. Neukirchen).
! http://www.sourceforge.net.

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2011.02.037

The rest of this article is structured as follows: first, we present
some foundations in Section 2. Section 3 presents and discusses
metrics on software quality and on software architecture. Next,
Section 4 presents our operationalization process, in particular our
study method, including how data was gathered and how metrics
were calculated. Our analysis is presented in Section 5 and Section
6 summarizes and concludes our work.

2. Background

Our view on software quality originates in the work of Garvin
(1984). Garvin defined a set of views on quality which are also
applicable to software (Kitchenham and Pfleeger, 1996). The char-
acteristics of quality in these views are:

¢ In the transcendental view, quality can be recognized but not
defined. This is the view that is espoused by Christopher Alexan-
der in his patterns work (Alexander, 1979) and to a certain extent
in the software patterns literature (Gamma et al., 1995).

¢ In the user view, a system has high quality if it fulfills the needs
of its users. This view is highly related to usability and is in line
with “quality in use” as defined in the ISO 9126 standard (ISO/IEC,
2001) as shown in Fig. 1.

¢ In the manufacturing view, a product is seen as being of high
quality if its development conforms to specifications and defined
processes. This view is to a certain extent part of CMM(I) (C
Product Team, 2006) or SPICE (ISO/IEC, 2004) and to the “pro-
cess quality” concept briefly mentioned in ISO 9126 as shown in
Fig. 1. In the sense of conformance to specifications, aspects of
“external” quality related to faults are also related to this view.


dx.doi.org/10.1016/j.jss.2011.02.037
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:klausmh@diku.dk
mailto:jonasson@hi.is
mailto:helmut@hi.is
http://www.sourceforge.net
dx.doi.org/10.1016/j.jss.2011.02.037

1234 K.M. Hansen et al. / The Journal of Systems and Software 84 (2011) 1233-1243

<— Process —>

<<influences>>

Process Quality

Internal Quality

) <<depends on>> )

<<Mmeasures>> <<measures>>
I I
I ]
Process Internal
Measures Measures

Product

<<influences>>

<— Effect ——>
<<influences>>

External Quality Quality in Use

<<depends on>> i <<depends on>> 4
<<measures>> <<measures>>

1 1
1 1

External Quality in Use

Measures Measures

Fig. 1. 1SO 9126 quality views (adapted from ISO/IEC, 2001).

e The value-based view equates quality to the amount a customer
is willing to pay for a product.

e In the product view, quality is tied to properties of the prod-
uct being developed. This is the primary view of “internal” and
“external” quality in ISO 9126 as shown in Fig. 1.

Turning to software architecture, there are many definitions of
software architecture.? An influential and representative definition
by Bass et al. (2003) states that:

The software architecture of a computing system is the struc-
tures of the system, which comprise software elements, the
externally visible properties of those elements, and the rela-
tionships among them

In other words, software architecture is concerned with struc-
tures (which can, e.g., be development or runtime structures) and
abstracts away the internals of elements of structures by only con-
sidering externally visible properties.

Recently, focus has also been on decisions made when defining
system structures (Tyree and Akerman, 2005; Jansen and Bosch,
2005). This leads to definitions such as:

A software system’s architecture is the set of principal design
decisions made about the system (Taylor et al., 2009).

We are here concerned with a large set of open source projects
and thus necessarily have to rely on (semi-)automated analyzes.
Thus we take the definition of Bass et al. as our basis for a definition
of software architecture.

Concerning metrics to measure software quality, a huge set of
metrics to chose from exists as metrics are widely practiced and
researched (Kan, 2002). However, only few of these metrics are
suitable to measure the quality of software architectural.

In principle, software architecture quality can be seen in any
of the views of Garvin. As an example, Grady Booch is applying a
value-based view in his selection of software architecture for the
Handbook of Software Architecture.3

However, prevailing software architecture analysis methods
(Dobrica and Niemela, 2002) tend to take a user-based or
manufacturing-based view on software architecture quality. The
Architecture Trade-off Analysis Method (ATAM; Kazman et al.,
2000), e.g., aims at finding trade-offs and risks in a software archi-
tecture compared to stakeholder requirement. ATAM’s focus on
stakeholders gives it to a large extent a user-based quality view,
but a manufacturing-based view is also included (e.g., in determin-
ing whether a specific trade-off is a potential risk). Architecture
analysis methods do not often, however, include specific met-
rics on software architecture; rather they focus on the software
architecture-specific parts of analyzes. Clements et al. (2002), e.g.,

2 http://www.sei.cmu.edu/architecture/start/definitions.cfm.
3 http://www.handbookofsoftwarearchitecture.com.

describe metrics for complexity only (e.g., “Number of component
clusters” and “Depth of inheritance tree” to predict modifiability
and sources of faults).

Very little has been written specifically on metrics for soft-
ware architecture. We looked systematically at papers from
architecture-related conferences that contain metrics (Hansen
et al., 2009). None of these metrics were appropriate for our pur-
poses nor did we find any other publication that investigates
empirically the effect of software architectures on product quality.

Applying statistical models and linear regression in the way we
do, to investigate relationships between different metrics, is also
novel in the software engineering literature, although it is common
in some other disciplines.

3. Metrics

We divide the metrics that we consider into “product metrics”
which are metrics related to software quality that are not architec-
tural in nature and “architecture metrics” which are architectural
in nature. Section 3.1 presents and discusses product metrics, Sec-
tion 3.2 presents and discusses architecture metrics, while Section
3.3 summarizes our choice of metrics for this work.

3.1. Product metrics

We are concerned with metrics that can measure quality from
any of the five views described in Section 2. With our data, we can
measure quality (to some extent) from three of the views.

3.1.1. Metrics related to the manufacturing view
Here we can use defect count as a direct measure of quality to
extent that defects are introduced during manufacturing.

Definition 1 (Open Defect Ratio (ODR)). The Open Defect Ratio
(ODR) for a project p is the ratio of the number of open defects
(plus 1) to the total number of open and closed defects (plus 1).

3.1.2. Metrics related to the value-based view

The value users put on an open source software project could be
quantified indirectly in a number of ways: number of downloads of
a project, usage count, communication about the project. Our data
contains usage count, and we can use usage rate as a direct measure
of quality:

Definition 2 (Rate Of Usage (ROU)). The Rate Of Usage (ROU) of a
project p is the ratio of total number of downloads to the project
age (in days).

We explicitly exclude payment since the projects we are con-
cerned with can all be used without paying for the use.

3.1.3. Metrics related to the product view
In the product view, quality is not measured directly, but rather
through measuring internal characteristics of the product. Basili


http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://www.handbookofsoftwarearchitecture.com

Download English Version:

https://daneshyari.com/en/article/461881

Download Persian Version:

https://daneshyari.com/article/461881

Daneshyari.com


https://daneshyari.com/en/article/461881
https://daneshyari.com/article/461881
https://daneshyari.com/

