
The Journal of Systems and Software 85 (2012) 2720– 2737

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Achieving dynamic adaptation via management and interpretation of runtime
models�

Mehdi Amouia,∗, Mahdi Derakhshanmaneshb, Jürgen Ebertb, Ladan Tahvildari a

a University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada
b University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany

a r t i c l e i n f o

Article history:
Received 1 May 2011
Received in revised form 23 April 2012
Accepted 8 May 2012
Available online 16 May 2012

Keywords:
Adaptation framework
Runtime adaptivity
Self-adaptive software
Model transformation
Models at runtime

a b s t r a c t

In this article, we present a generic model-centric approach for realizing fine-grained dynamic adapta-
tion in software systems by managing and interpreting graph-based models of software at runtime. We
implemented this approach as the Graph-based Runtime Adaptation Framework (GRAF), which is partic-
ularly tailored to facilitate and simplify the process of evolving and adapting current software towards
runtime adaptivity. As a proof of concept, we present case study results that show how to achieve runtime
adaptivity with GRAF and sketch the framework’s capabilities for facilitating the evolution of real-world
applications towards self-adaptive software. The case studies also provide some details of the GRAF
implementation and examine the usability and performance of the approach.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Self-adaptive software (SAS) is a software system that is able to
modify its own behavior in response to changes in its operating
environment (Oreizy et al., 1999). One of the main advantages of
SAS is its ability to manage the complexity that stems from highly
dynamic and nondeterministic operating environments. However,
in practice, implementing self-adaptive and autonomic behavior
can lead to an increase in overall system complexity (e.g., due to
a complex adaptation logic that needs to be embedded into the
system), as well as subsequent future maintenance costs.

In software engineering, modeling is as an effective strategy for
managing system complexity (Ludewig, 2003) (e.g., by eliminating
or hiding unnecessary details). To tackle the complexity issue in the
context of SAS, the construction of precise and accurate models of
software that can support various aspects of adaptation is essential
(Cheng et al., 2009; Andersson et al., 2009). However, modeling in
the SAS domain is a hard task, mainly because of the highly dynamic
nature of SAS systems and their operating environments. Difficul-
ties arise especially in the area of model-centric runtime adaptation,

� This article is a revised and expanded version of a paper accepted at the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2011), Honolulu, Hawaii, May 2011.

∗ Corresponding author.
E-mail addresses: mamouika@uwaterloo.ca (M. Amoui),

manesh@uni-koblenz.de (M. Derakhshanmanesh), ebert@uni-koblenz.de (J. Ebert),
ltahvild@uwaterloo.ca (L. Tahvildari).

where models need to be managed at runtime (Garlan and Schmerl,
2004; Morin et al., 2009).

In order to effectively use models at runtime, we propose a
model-centric architecture for SAS, in which adaptation is achieved
through managing and interpreting a dynamic runtime model of
software, instead of directly changing the software system. This
approach explicitly separates software and its common business
logic from the adaptivity-related concerns such as runtime models
and adaptation logic. We realize our approach as the Graph-based
Runtime Adaptation Framework (GRAF) (Derakhshanmanesh et al.,
2011), which utilizes TGraphs (Ebert et al., 2008) and its accompa-
nying technologies, as the enabling technology, for modeling and
manipulating runtime models.

When designing GRAF, our primary goal was to show that run-
time adaptivity can be achieved by applying techniques that are
common and well-established in the model-driven domain. Our
focus was set on the use of software models at runtime in the tech-
nical context of a reflective architecture (Buschmann et al., 1996)
that can support the evolution of existing software towards SAS.
Hence, the applied set of operations on runtime models consists of
(i) querying, i.e., gathering change information from the meta-layer,
(ii) transforming, i.e., adapting the meta-layer, and (iii) interpret-
ing as a means of reflecting changes from the meta-layer to the
executing software parts in the underlying base-layer.

Our proposed model-centric approach is supported by a number
of case studies that serve as a proof of concept, show by exam-
ple, how to achieve runtime adaptivity with GRAF, and sketch the
framework’s capabilities for facilitating the evolution of real-world

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.05.033

dx.doi.org/10.1016/j.jss.2012.05.033
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:mamouika@uwaterloo.ca
mailto:manesh@uni-koblenz.de
mailto:ebert@uni-koblenz.de
mailto:ltahvild@uwaterloo.ca
dx.doi.org/10.1016/j.jss.2012.05.033

M. Amoui et al. / The Journal of Systems and Software 85 (2012) 2720– 2737 2721

applications towards a self-adaptive software system. The case
studies support understanding the benefits and drawbacks of fine-
grained adaptation using GRAF, i.e., adaptation at the level of fields
and methods, and present our proposed non-intrusive approach for
preparing the required adaptable software and its runtime model.

This article is organized as follows: Section 2 elaborates on
the concept of models at runtime in SAS with an emphasis on the
design considerations and motivating factors that drive this work.
Section 3 gives a comprehensive overview of GRAF’s model-centric
architecture together with its runtime behavior. Section 4 gives an
overview of the technologies that are involved in the framework’s
implementation. Section 5 puts GRAF in a migration context and
illustrates how to prepare adaptable software by evolving non-
adaptive software. Section 6 presents the case studies of applying
GRAF to two real-world application domains: computer gaming
and Internet telephony. Section 7 covers the related work. Finally,
we conclude this paper in Section 8 and outline possible future
research directions.

2. Design considerations

There is a multitude of approaches to achieve runtime adaptiv-
ity by incorporating runtime models (Garlan and Schmerl, 2004;
Morin et al., 2009; Vogel and Giese, 2010; Blair et al., 2009). To
make our design considerations more clear, we initially present
an introduction to model-centric runtime adaptivity in the context
of computational reflection (Maes, 1987). Thereupon, we give an
overview on the influences from different areas that had an impact
on our work and especially on the framework’s design.

2.1. Model-centric runtime adaptivity

SAS must be self-aware, i.e., it must be able to access state infor-
mation regarding (a subset of) its own structural and behavioral
elements. This is essential, because changes in the software’s oper-
ating environment as well as in the state of software itself need to
be observed by the adaptation manager.

Computational reflection, as defined by Maes (1987), is a common
solution for achieving the self-awareness property (Weyns et al.,
2010). Such a reflective system is connected to a representation of
itself. If the system changes, its self-representation changes accord-
ingly (reification). Vice versa, changes in the self-representation
result in changes to the underlying software (reflection).

In a reflective architecture (Buschmann et al., 1996), the part
of software that specifies the business logic and interacts with
the application domain is called the base-layer. The base layer is
causally connected (Morin et al., 2008) to a meta-layer, i.e., the self-
representation of the system. This meta-layer can be realized in
different ways, for instance, it can be implemented as an object
model in an object-oriented programming language.

From our perspective on model-centric runtime adaptivity, the
software system to be controlled at runtime (adaptable software)
serves as a base-layer of a reflective architecture. Adaptable soft-
ware is connected to a meta-layer, which is the actual runtime model
acting as a mediator. Moreover, an adaptation manager controls the
adaptable software by manipulating the runtime model instead
of directly operating on the adaptable software. This structure is
sketched in the context diagram illustrated in Fig. 1.

In Fig. 1, starting from the adaptable software, the state of the
adaptable software is propagated to its runtime model (reifica-
tion). These changes are then observed by the adaptation manager
(sensing). Subsequently, the adaptation manager plans and selects
adjusting actions (controlling) and adapts the runtime model
accordingly (effecting). Finally, changes made to the runtime mod-
els are propagated back into the adaptable software (reflection) by

Adaptable Software

Runtime Model

Adaptation Manager

Sensing

Reification

Effecting

Reflection

Controlling

Fig. 1. Context diagram of model-centric SAS (Derakhshanmanesh et al., 2011).

either parameter adaptation, i.e., by changing variables values, or via
compositional adaptation, i.e., by adjusting the software’s structure
(McKinley et al., 2004).

Given such a model-centric architecture, the structure and
behavior of software can be changed by modifying the model only.
As a result, software engineers can work with the models first,
instead of modifying the adaptable software directly. This approach
supports the implementation of adaptivity by modifying the inter-
mediate layer automatically via a set of predefined transformations.

In the following, we describe the major concerns that we had in
mind when designing GRAF, namely (i) change reflection via model
interpretation and (ii) low coupling between the adaptable software
to the framework. It is noteworthy that several other aspects, such
as the verification and synchronization of models, are also essential
to the success of models at runtime in the area of SAS, which are
not tackled in this article.

2.2. Model interpretation for change reflection

Given that the meta-layer is available as a model, the process of
reflecting, i.e., injecting changes from the meta-layer into the base
layer, can be done in several ways and using different techniques.
For instance, software components can be composed at runtime
(Cheng et al., 2004; Vogel and Giese, 2010) or functionality can be
adjusted using dynamic aspect weaving (Grace et al., 2008).

In GRAF, we take a different direction, because we intend to
integrate the runtime model as deeply into the software as possible.
The idea is to build generic software based on runtime models that
describe the variable parts of the system. These explicit models are
then interpreted at runtime using a generic and stable software core.
In fact, GRAF is the first attempt for applying this approach in the
area of SAS.

Besides achieving adaptation by adjusting program variable
values, the main way of achieving adaptivity in this research is
by redirecting the adaptable software’s control flow to a model
interpreter component at points where the need for adaptivity is
expected. When such an interpretation point in the control flow is
reached during the execution of the adaptable software, the model
interpreter executes an associated behavior, as described in the
runtime model. Therefore, transforming behavior descriptions that
are stored in the runtime model results in adapted program behav-
ior.

2.3. Low coupling to adaptation framework

Assume that some software already exists and shall be evolved
towards an adaptive system. In the case that no adaptation was
performed at runtime, the resulting SAS has to perform the same
functionality as the non-migrated legacy system. An obvious strat-
egy towards this goal is to make as little changes as possible to the

Download English Version:

https://daneshyari.com/en/article/461888

Download Persian Version:

https://daneshyari.com/article/461888

Daneshyari.com

https://daneshyari.com/en/article/461888
https://daneshyari.com/article/461888
https://daneshyari.com

