
The Journal of Systems and Software 85 (2012) 2770– 2784

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

HPobSAM for modeling and analyzing IT Ecosystems – Through a case study

Narges Khakpourb,a,e, Saeed Jalili a,∗, Marjan Sirjani c,d, Ursula Goltzb, Bahareh Abolhasanzadeha

a Tarbiat Modares University, Tehran, Iran
b Technical University of Braunschweig, Braunschweig, Germany
c Reykjavk University, Reykjavk, Iceland
d University of Tehran, Tehran, Iran
e Leiden Institute for advanced Computer Science, Leiden University, The Netherland

a r t i c l e i n f o

Article history:
Received 7 May 2011
Received in revised form 7 February 2012
Accepted 7 March 2012
Available online 16 March 2012

Keywords:
Self-adaptive systems
Large-scale software systems
Formal modeling
Verification
Self-organizing systems

a b s t r a c t

The next generation of software systems includes systems composed of a large number of distributed,
decentralized, autonomous, interacting, cooperating, organically grown, heterogeneous, and continually
evolving subsystems, which we call IT Ecosystems. Clearly, we need novel models and approaches to
design and develop such systems which can tackle the long-term evolution and complexity problems.
In this paper, our framework to model IT Ecosystems is a combination of centralized control (top-down)
and self-organizing (bottom-up) approach. We use a flexible formal model, HPobSAM, that supports
both behavioral and structural adaptation/evolution. We use a detailed, close to real-life, case study of a
smart airport to show how we can use HPobSAM in modeling, analyzing and developing an IT Ecosystem.
We provide an executable formal specification of the model in Maude, and use LTL model checking and
bounded state space search provided by Maude to analyze the model. We develop a prototype of our
case study designed by HPobSAM using Java and Ponder2. Due to the complexity of the model, we cannot
check all properties at design time using Maude. We propose a new approach for run-time verification of
our case study, and check different types of properties which we could not verify using model checking.
As our model uses dynamic policies to control the behavior of systems which can be modified at runtime,
it provides us a suitable capability to react to the property violation by modification of policies.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The next generation of software systems includes complex
systems of systems where the individual systems and components
are modeled, built, operated, and controlled by different stake-
holders, across organizations. Furthermore, software systems and
components are equipped with increasing autonomy, including
capabilities for self-configuration and self-organization. We call
such systems IT Ecosystems. Such software-intensive IT systems
can no longer be designed in a purely centralized fashion. Novel
approaches are required to design, develop and analyze these
systems.

1.1. Motivation

IT Ecosystems must have the ability to continually evolve and
grow even in situations that are unknown during the development
time. Due to the fact that it is impossible to fully and properly

∗ Corresponding author.
E-mail addresses: nkhakpour@modares.ac.ir (N. Khakpour), sjalili@modares.ac.ir

(S. Jalili), marjan@ru.is (M. Sirjani), goltz@ips.cs.tu-bs.de (U. Goltz),
bahar.abolhasanzadeh@modares.ac.ir (B. Abolhasanzadeh).

predict adaptive needs during the design time, adaptive behavior
must be built in a way that is flexible and modifiable at runtime,
because hard-coded mechanisms make tuning and adapting long-
run systems complicated.

While each subsystem of a system evolves and changes
autonomously to be able to adapt to potentially changing envi-
ronmental conditions and constraints, they are also cooperating
to fulfill a global goal. The centralized control approach to design,
in which the behavior of the system is controlled in a top-down
way, has attained its limit. In contrast, the decentralized approach
relying on a self-organized bottom-up establishment of the desired
behavior appears to be infeasible, since we have to make sure that
this decentralized approach does not result in unanticipated and
undesired behavior. As often, the design of the system has to follow
an approach in the middle, somewhere in-between a centralized
and a decentralized architecture.

Furthermore, since a complex software system often has a
great degree of autonomy, it is more difficult to ensure that
it behaves as intended and avoids undesirable behavior. There-
fore, to guarantee the functionality of a complex IT Ecosystem,
we have to provide mechanisms to ensure that the system is
operating correctly, where model-driven approaches and formal
methods can play a key role. Therefore, we need novel models
and approaches to design and develop such systems which can

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.03.007

dx.doi.org/10.1016/j.jss.2012.03.007
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:nkhakpour@modares.ac.ir
mailto:sjalili@modares.ac.ir
mailto:marjan@ru.is
mailto:goltz@ips.cs.tu-bs.de
mailto:bahar.abolhasanzadeh@modares.ac.ir
dx.doi.org/10.1016/j.jss.2012.03.007

N. Khakpour et al. / The Journal of Systems and Software 85 (2012) 2770– 2784 2771

tackle the long-term evolution, flexibility, complexity and assurance
problems.

Different frameworks and models have been introduced to
design large-scale software systems inspired by natural systems
(Villalbaa and Zambonelli, 2011; Beal and Bachrach, 2006; Viroli
et al., 2010; Shen et al., 2004). Furthermore, Sloman and Lupu
(2010) proposed a flexible policy-based approach for designing
ubiquitous systems. Although most of the existing models are able
to exhibit properties of self-organization, self-adaptability, and
of long-lasting evolvability, they are not provided with a formal
foundation. Also, researchers have paid a lot of attention to for-
mal specification and analysis of dynamic adaptation (Bradbury
et al., 2004; Taentzer et al., 2000; Cansado et al., 2010; Khakpour
et al., 2010a; Zhang and Cheng, 2006). Here, most of the existing
approaches deal with either behavioral adaptation or structural
adaptation (Becker and Giese, 2008; Bradbury et al., 2004). Adap-
tation, self-* properties, and autonomous computing are however
restricted to responding short-term changes, while systems must
be additionally able to evolve and grow to cover the long-term
evolution of systems (Deiters et al., 2010).

1.2. Contribution

In this paper we study HPobSAM as a framework for model-
ing, developing and verifying IT Ecosystem (Khakpour et al., 2010a,
in press; Khakpour et al., submitted for publication) illustrated
through a transportation service of a smart airport. Our contribu-
tions are as follows:

• We illustrate how HPobSAM can be used as a flexible model
for designing IT Ecosystems using a transportation service case
study.

• We provide an executable formal specification of the model in
Maude (Clavel et al., 2003). LTL model checking and bounded state
space search are used to analyze the model. We found a cross
deadlock and the robot collision in our transportation scenario.

• Due to the complexity of our models, we face state explosion
problems when we use model checking to verify some properties.
Thus, we employ run-time verification (Lee et al., 1999; Feather
et al., 1998) as a complement to model checking in which the
executions of the system are monitored and checked against a
set of formal specifications. We present a new flexible trace-based
approach to verify the system at runtime in which properties to
be monitored are specified using an algebra. Then, we transform
the algebraic properties into a set of policies which are assigned
to an observer. A policy expresses whether an event is expected
to occur or not. An observer is modeled as a PobSAM manager
that uses the policies to check the conformance of the system
behavior to the properties.

• In run-time verification, reaction to the property violations is a
main challenge. We address this problem by dynamically defining
policies to react to the violations.

• To evaluate the applicability of our approach in practice, we have
developed a prototype of our scenario using Java and the Ponder2
tool set (Twidle et al., 2008). We use PonderTalk as the policy
language to specify policies.

PobSAM (Policy-based Self-Adaptive Model) (Khakpour et al.,
2010a,b) is a flexible formal model for developing and model-
ing self-adaptive systems which uses policies as the principal
paradigm to govern and adapt the system behavior. Policies are
known as a powerful mechanism to achieve flexibility in adap-
tive and autonomous systems which allow us to “dynamically”
specify the requirements in terms of high level goals. A PobSAM
model is a collection of actors, views, and autonomous man-
agers. The autonomous managers govern the behavior of actors

by enforcing suitable policies using contextual information pro-
vided by views. This model supports behavioral adaptation through
modifying the policies used to control the system behavior intro-
duced in Khakpour et al. (2010a). HPobSAM is an extension of
this model to support hierarchical modeling and structural adap-
tation introduced in Khakpour et al. (submitted for publication),
in which a manager is aware of its substructure and adapts its
substructure to the changing environment according to policies.
HPobSAM has a formal foundation that employs an integration of
algebraic formalisms and actor-based models. The structural oper-
ational semantics of HPobSAM is described using graph transition
systems and hierarchical hypergraph transformation. In this paper,
we (i) study the applicability of HPobSAM in designing IT Ecosys-
tems, (ii) provide the mapping of HPobSAM to Maude, (iii) propose
a new runtime verification approach for HPobSAM, and (iv) intro-
duce the detailed case study of the smart airport and its modeling,
verification and implementation using HPobSAM.

In this paper we explain HPobSAM and our analysis techniques
through a case study, smart airport. The smart airport case study
is introduced in Section 2. After giving an overview of HPobSAM
in Section 3, in Section 4 we explain the modeling framework and
discuss why HPobSAM is suitable for modeling IT Ecosystems in
general. In Section 5 we show the HPobSAM model for the smart
airport. In Section 6, we present the Maude specification of our
model and analyze the model formally. An approach is proposed
to verify our case study at run time in Section 7. We compare our
approach with related work in Section 8, and Section 9 concludes
the paper.

2. Case study overview

The airport departure scenario is an example of a software-
intensive system of systems (Deiters et al., 2010). We use a
transportation service at the departure area of an airport as our
case study. This transportation service is supposed to be realized
by a number of Autonomous Transport Vehicles (ATVs) which are
responsible to transport passengers between stopovers including
passenger entrances, check-in desks, departure gates, and plane
parking positions. There are several two-lane roads which connect
the aforementioned stopovers. To avoid congestion and blockages,
there are some side roads which can be used instead of the main
roads (implying a reduced vehicle speed).

There are a variety of ATVs of different sizes to perform
transportation in a self-organizing manner. All ATVs know the
airport map and stopovers. The transportation service of the trans-
port vehicles contains transporting passenger (i) from an airport
entrance to one of the five check-in desks, (ii) from a check-in desk
to one of the departure gates, and (iii) from a departure gate to
the correct parking position of the respective plane. ATVs consume
energy while driving on roads, and they have to recharge their
batteries at a charging station.

The observation systems (e.g. smart cameras, sensors, RFID
readers) placed around the area gather and provide information
(e.g. the current traffic information). This information is used by
ATVs in order to achieve a good performance of transportation.
Furthermore, passengers use a mobile device, called SmartFolk, to
interact with the IT systems at the Smart Airport. A SmartFolk can be
seen as a device like a PDA. Within the IT Ecosystem they represent
their owners and act as interfaces to the airport IT Ecosystem.

ATVs are signed in a service named transport scheduler that
collects passenger orders and offers tickets (pickup/drop positions,
times) to the ATVs. Hence ATVs have to collaborate and negotiate
in competition on tickets, roads and charging stations. To prevent
the occurrence of unsafe situations caused by a selfish acting ATV,
we need to implement a mechanism to balance agent autonomy
and system controllability.

Download	English	Version:

https://daneshyari.com/en/article/461891

Download	Persian	Version:

https://daneshyari.com/article/461891

Daneshyari.com

https://daneshyari.com/en/article/461891
https://daneshyari.com/article/461891
https://daneshyari.com/

