
The Journal of Systems and Software 85 (2012) 2829– 2839

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Analysing monitoring and switching problems for adaptive systems

Mohammed Salifua, Yijun Yua,∗, Arosha K. Bandaraa, Bashar Nuseibeha,b

a Department of Computing, The Open University, UK
b Lero, University of Limerick, Ireland

a r t i c l e i n f o

Article history:
Received 30 April 2011
Received in revised form 15 July 2012
Accepted 17 July 2012
Available online 31 July 2012

Keywords:
Monitoring
Switching
Problem description
Requirements engineering
Self-adaptive systems

a b s t r a c t

In the field of pervasive and ubiquitous computing, context-aware adaptive systems need to monitor
changes in their environment in order to detect violations of requirements and switch their behaviour in
order to continue satisfying requirements. In a complex and rapidly changing environment, identifying
what to monitor and deciding when and how to switch behaviours effectively is difficult and error prone.
The goal of our research is to provide systematic and, where possible, automated support for the software
engineer developing such adaptive systems.

In this paper, we investigate the necessary and sufficient conditions for both monitoring and switching
in order to adapt the system behaviours as the problem context varies. Necessary and sufficient condi-
tions provide complementary safeguards to ensure that not too much and not too little monitoring and
switching are carried out. Our approach encodes monitoring and switching problems into propositional
logic constraints in order for these conditions to be analysed automatically using a standard SAT solver.

We demonstrate our approach by analysing a mobile phone system problem. We analysed require-
ments violations caused by changes in the system’s operating environment. By providing necessary and
sufficient monitoring and switching capabilities to the system, particular requirements violations were
avoided.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In pervasive and ubiquitous computing (Bettini et al., 2010),
many software systems are required to be context-aware and self-
adaptive (Weyns et al., 2012). They need to monitor the changes in
their environment in order to detect violations of their core require-
ments; they also need to switch their behaviour in order to continue
satisfying those requirements. Monitoring requirements define the
activities needed to detect changes in operating environments
that lead to requirements violations. Switching requirements define
activities needed to adapt system behaviour to restore the satisfac-
tion of such requirements. In general, context-aware requirements
define the self-adaptive activities needed to compose monitoring
and switching activities in order to maintain the satisfaction of the
original requirements.

Monitoring and switching have been recognised in research on
adaptive mechanisms of autonomic, ubiquitous and self-managing
software systems (Abowd, 1999; Georgiadis et al., 2002; Grimm
et al., 2004; Zhang and Cheng, 2006a) such as in the MAPE
(Monitoring, Analysing, Planning, Executing) loop proposed for
autonomic computing (Abowd, 1999; Kephart and Chess, 2003).
Current research on context-aware systems, however, focuses

∗ Corresponding author.
E-mail address: y.yu@open.ac.uk (Y. Yu).

mostly on issues such as user-device interaction design, systems
architectures and implementation (Abowd, 1999). An early analy-
sis of the impact of contextual changes on requirements satisfaction
and the analysis of the requirements of monitoring and switching
problems have not been fully explored. Furthermore, in a complex
and rapidly changing environment, identifying what to monitor
and deciding when and how to switch behaviours effectively can
be difficult and error-prone.

Therefore, an open research question addressed in this paper
is, given requirements that adaptive software must monitor contexts
and switch its solution alternatives, what are the respective necessary
and sufficient conditions for the monitoring and switching actions? The
goal of our work is to investigate necessary and sufficient conditions
for both monitoring and switching in order to adapt the system
behaviours as the context varies. Necessary and sufficient condi-
tions provide complementary safeguards to ensure that neither too
much and nor too little monitoring and switching are carried out.

Our theoretical framework to derive these conditions for the
context-awareness requirements can reduce monitoring overhead
by ensuring that fewer contextual variables are monitored. It can
also switch the system to a solution that can offer better quality
requirements to meet the preferences of a given tradeoff. Unnec-
essary switching is also avoided, especially when the available
solutions do not provide any enhancement of the quality require-
ments as defined in the tradeoff. Overall, our problem-oriented
approach enables a software engineer to: (1) represent and reason

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.07.062

dx.doi.org/10.1016/j.jss.2012.07.062
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:y.yu@open.ac.uk
dx.doi.org/10.1016/j.jss.2012.07.062

2830 M. Salifu et al. / The Journal of Systems and Software 85 (2012) 2829– 2839

about changes in the physical environment of software systems and
assess their impact on requirements satisfaction; (2) specify moni-
tors and switchers that can detect changes and adapt in response to
requirements satisfaction violation; and (3) ensure that the condi-
tions for monitors and switchers are both necessary and sufficient.

According to Kramer and Magee (2007), such an early analysis
of problems is necessary to both the development and validation of
self-managing systems. Self-management is an inherent character-
istic of context-aware self-adaptive systems (Hinchey and Sterritt,
2006). Also, the explicit analysis of systems’ operating environment
is fundamental to assessing the continuous satisfaction of require-
ments (Cheng and Atlee, 2007). Fig. 1 presents Kramer et al.’s view
of self-adaptive systems as a three-layered architecture, in which
the top layer concerns the goals of the adaptation, the middle layer
concerns the plans of the adaptation, and the bottom layer concerns
the components that need to be reconfigured to support the adapta-
tion. Our work focuses on the top two layers of the architecture that
address the problem space, representing the relations among con-
textual information (W), requirements (R) and the specifications of
the required solution (S) as a logic entailment W, S � R.

Shifting focus from design activities to earlier requirements
analysis, we build on problem-oriented approaches (Jureta et al.,
2009; Jackson, 2001; Sutcliffe and Maiden, 1998) to describe
three kinds of artefacts in adaptation: requirements goals, switch-
ing plans and contextual components that may impact system
behaviour (i.e. business logic). We also adopt the annotation-based
approach in Problem Frames for UML (Côté et al., 2011) to introduce
stereotypes on states of UML statecharts for eliciting context vari-
ables and annotate the transitions of the statecharts for contextual
dependencies. Then we use a standard SAT solver for automated
analysis.

The paper is an extension and validation of our earlier work
on the use of a problem-oriented approach to analyse the require-
ments for monitoring and switching problems under varying
contexts (Salifu et al., 2007). The novelty of the extension is an
additional assessment of necessity and sufficiency of the derived
monitoring and switching behaviours. By analysing a mobile phone
system problem, we demonstrate how such a framework can
be applied to analysis of its context-awareness and self-adaptive
requirements, and measured the improvement of the proposed
approach on the simulated monitoring and switching behaviour of
the self-adaptive system combining the Java implementation with
SAT solvers.

The remainder of the paper is structured as follows: we begin
with a description of related work in Section 2 that presents funda-
mental concepts and their application to our work and related work
on monitoring and switching. Section 3 presents our approach in
two parts – a general description and its application. In Section 4
we provide a detailed illustration of our approach’s application to
a case study to show its usefulness in avoiding requirements viola-
tions caused by contextual changes. We conclude with a discussion
of our approach in Section 5 and some final remarks in Section 6.

2. Related work

2.1. Representation of the context-awareness requirements

In their four-variable monitoring model, Peters and Parnas refer
to the monitoring activities that focus on internal state change
as software monitors and those focusing on the external envi-
ronmental states change as system monitors (Peters and Parnas,
2002). For context-awareness we are interested in system monitors
that detect the changes requiring variation in software behaviour
that are caused by environmental changes. Zave and Jackson
(1997) describe software problems as consisting of three kinds of

artefacts – contextual information about the physical world (W),
requirements (R) and the specifications of the required solution
(S), which are logically related as the entailment W, S � R. That is,
the use of specification S in context W ensures the satisfaction of
the requirements R. Detailed analysis of contexts is important for
analysing monitoring and switching problems. It is necessary to
distinguish physical and other types of contexts to specify system
monitoring and switching (Sutcliffe and Maiden, 1998).

Ali et al. (2010) represent context information as a set of vari-
able constraints organised in a refinement hierarchy similar to that
of goal models, and combine the analysis of goal satisfactions with
the contextual constraints. While goal-based approaches empha-
sise the refinement of R and arguably S, they are rather weak in
the refinement of W (Hall et al., 2007) because (a) the develop-
ment of goal-trees is driven by goal refinements; and (b) leaf level
goals and agents that represent some part of S and W are termi-
nal, which make their further refinement implausible. Mapping the
contextual variables to the goal refinement is a task requiring ana-
lysts to check m × n possible relations where m is the number of
refinements in the goal model, and n is the number of context vari-
ables. On the other hand, the Problem Frames approach (Jackson,
2001) describes both optative and indicative properties of W and
relates them to the requirements R and the solutions S. There-
fore, we choose this representation of contextual properties for
analysing the impact of W on both satisfaction of requirements
R and context-awareness of S. Comparing to Ali et al. (2010) we
do not require extra mappings between goals and contexts since
they are already present as a by-product of the problem context
diagrams.

2.2. Requirements-driven analysis

Current monitoring approaches on requirements failure diag-
nostics focus on execution failures. Example work on failure
diagnostics is the ReqMon approach (Robinson, 2002, 2005) that
claims to exhaustively investigate all failure sources. Other work
on failure diagnostics includes the work of Wang et al. (2009) that
identifies and defines possible failure points thereby restricting
their diagnostic analysis space at run-time. What these approaches
have in common is their focus on the execution failure as the
triggering event for diagnostics. This is insufficient in the case
of context-awareness (Feather et al., 1998; Fickas and Feather,
1995) because the software execution may only seem to sat-
isfy the requirement according to invalid assumptions about the
environment. Whittle et al. have developed a declarative style
requirements language for specifying both the variables to be mon-
itored and components for adaptation (Whittle et al., 2009). In
comparison, their language expresses the degraded requirements
in logic rules using fuzzy operators, while our approach makes
use of partial fulfilment labels to encode the different degrees
of satisfaction of quality requirements as crisp proposition liter-
als, such as Fully Satisfied (FS), Partially Satisfied (PS), Partially
Denied (PD), and Fully Denied (FD). In both languages, since the
adaptation is declarative, an exhaustive specification of different
adaptation behaviours is not required. Furthermore, uncertain-
ties in the system context are explicitly specified and dynamically
managed during system execution. The dynamic management of
uncertainties may be used to diagnose and prevent systems from
failures in unexpected situations. The advantages of avoiding the
fuzzy operators, in our case, help the runtime decisions based on
the propositions to be more deterministic, while some degree of
uncertainty is tolerated by the rules with partial satisfaction and
denial encoding of propositions.

Concerning switching activities, existing approaches (Zhang and
Cheng, 2006b,a) primarily focus on the collaboration of multiple
threads at runtime (Brown et al., 2006; Cheng et al., 2006; Janik

Download	English	Version:

https://daneshyari.com/en/article/461895

Download	Persian	Version:

https://daneshyari.com/article/461895

Daneshyari.com

https://daneshyari.com/en/article/461895
https://daneshyari.com/article/461895
https://daneshyari.com/

