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We consider a bifurcation problem arising from population biology

du(t)

dt
= f

(
u(t)

) − εh(t),

where f (u) is a logistic type growth rate function, ε � 0, h(t) is a continuous function
of period T such that

∫ T
0 h(t)dt > 0. We prove that there exists an ε0 > 0 such that the

equation has exactly two T -periodic solutions when 0 < ε < ε0, exactly one T -periodic
solution when ε = ε0, and no T -periodic solution when ε > ε0.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

When a population grows at a density-dependent growth rate f (u) and it is harvested with a seasonal harvesting
rate h(t) with period T , the population can be described by a differential equation (see for example, [3,4,8])

du(t)

dt
= f

(
u(t)

) − h(t). (1.1)

Here we assume that the non-linear function f is a logistic type function which satisfies

(f1) f ∈ C2(R), f (0) = 0, f ′(0) > 0, f (u) > 0 for u ∈ (0, M), f (M) = 0 and f ′(M) < 0;
(f2) f ′′(u) < 0 for u ∈ R.

Some typical examples of f (u) are f (u) = au − bup , where a,b > 0, p � 2, see [10,12,17,20]. When h(t) is a constant h,
then it is easy to know that there is a threshold (maximum sustainable yield) h∗ > 0 such that when h > h∗ , (1.1) has no
equilibrium and the population is destined to extinction, and when h < h∗ , there are exactly two positive equilibria. When
the seasonal effect on the harvesting is considered (h(t) periodic), then one expects that periodic solutions play similar role
as equilibria in the constant case, and the question is: how many periodic solutions does (1.1) have?

Here we assume that the total yield over one season (period) is positive, that is
∫ T

0 h(t)dt > 0. Thus we allow h(t) to
be negative, that is stocking instead of harvesting, but the total effort is still harmful to the population. Without loss of
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generality, we can normalize h(t) so that
∫ T

0 h(t)dt = T , and we rewrite (1.1) to be

du(t)

dt
= f

(
u(t)

) − εh(t), (1.2)

where ε ∈ R measures the harvesting strength. Our result is

Theorem 1.1. Suppose that f satisfies (f1) and (f2). Let h(t) be a continuous function of period T such that
∫ T

0 h(t)dt = T . Then there
exists an ε0 > 0 such that (1.2) has exactly two T -periodic solutions when ε < ε0 , exactly one T -periodic solution when ε = ε0 , and
no T -periodic solution when ε > ε0 .

Thus the dynamics of (1.2) is qualitatively similar to the autonomous equation with constant h(t), with two equilibria
replaced by two periodic solutions. One can also define ε0 as the maximum sustainable yield in this case.

It is known that (1.2) has at most two periodic solutions due to the concavity of f , see Pliss [18], Lazer and Sànchez [13],
Mawhin [15], and Korman and Ouyang [11]. The turning point (fold) structure is also studied in [11,15], as well as McKean
and Scovel [16]. But the main result in [11,16] is for a more general problem, and the result is abstract in describing
the singular points. The result in [15] assumes that f depends on t , but h(t) is assumed to be a constant or strictly
positive (see [15, Remark 2]). Our result here is more specific in term of harvesting model, and it is more general than
the one in [15] since we only assume that

∫ T
0 h(t)dt > 0. Our proof uses some ingredients in previous approach, but also

some more recent bifurcation theory. A different approach was given in Benardete, Noonburg and Pollina [3], based on
Poincaré map and dynamical systems arguments, and they proved a special case of Theorem 1.1 when f (x) = Rx(1 − x) and
h(t) = 1 + α sin(2πt). Other recent discussions can be found in [2,5–7], for example.

We give preliminaries in Section 2, and we prove the main result in Section 3. Some discussions, numerical examples
and conjectures are given in Section 4. An earlier version of Theorem 1.1 appeared in Problem Section of Electronic Journal
of Differential Equations in 2006 [19].

2. Preliminaries

To prove the theorem we recall the following result based on the implicit function theorem:

Lemma 2.1. Consider

x′ = f (ε, t, x), (2.1)

where f ∈ C1(R × R × Rn,Rn), and x ∈ Rn. We suppose that f (ε, t + T , x) = f (ε, t, x) for all (ε, t, x) ∈ R × R × Rn, and for ε = 0,
(2.1) has a T -periodic solution y = y(t). Let z(ε, t, ξ) be the solution of the initial value problem:

z′ = f (ε, t, z), t > 0, z(0) = ξ, (2.2)

and let A(ε, t, ξ) = ∂z(ε, t, ξ)/∂ξ . Suppose that λ = 1 is not an eigenvalue of A(0, T , y(0)). Then there exists a δ > 0 such that for
|ε| < δ, there exists a C1 function ξ(ε) such that ξ(0) = y(0), and (2.1) has a unique T -periodic solution yε(t) with yε(0) = ξ(ε).

Proof. This lemma is well known, see for example, [1]. For the sake of completeness, we include the proof here. Notice that
a T -periodic solution satisfies z(ε, T , ξ) = ξ . Define F : R × Rn → Rn by F (ε, ξ) = z(ε, T , ξ) − ξ . Then F is continuously dif-
ferentiable, F (0, y(0)) = 0, Fξ (0, y(0)) = A(0, T , y(0))− I . Since λ = 1 is not an eigenvalue of A(0, T , y(0)), then Fξ (0, y(0))

is invertible, and the claimed result follows from the implicit function theorem. �
We also recall a well-known result for concave non-linearity. A particular case of Lemma 2.2 was known in Pliss [18],

and the current version is due to Mawhin [15] (see also Korman and Ouyang [11]).

Lemma 2.2.

x′ = f (t, x), (2.3)

where f (t + T , x) = f (t, x) and fxx(t, x) < 0 for all (t, x) ∈ R × Rn. Then (2.3) has at most two T -periodic solutions.

We also recall the following well-known bifurcation theorem in [9] and a new bifurcation theorem of the authors [14].

Theorem 2.3 (Saddle-node bifurcation theorem of Crandall and Rabinowitz [9]). Suppose that X and Y are Banach spaces. Let
(λ0, u0) ∈ R × X and let F be a continuously differentiable mapping of an open neighborhood V of (λ0, u0) into Y . Suppose that
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