
The Journal of Systems and Software 85 (2012) 1801– 1817

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Context-oriented programming: A software engineering perspective

Guido Salvaneschia,b,∗, Carlo Ghezzib, Matteo Pradellab

a TU Darmstadt, Software Technology Group, Hochschulstr. 10, 64289 Darmstadt, Germany
b DEEPSE Group, DEI, Politecnico di Milano, Piazza L. Da Vinci, 32, 20133 Milano, Italy

a r t i c l e i n f o

Article history:
Received 30 April 2011
Received in revised form 8 March 2012
Accepted 11 March 2012
Available online 20 March 2012

Keywords:
Context-oriented programming
Context
Context-awareness

a b s t r a c t

The implementation of context-aware systems can be supported through the adoption of techniques
at the architectural level such as middlewares or component-oriented architectures. It can also be sup-
ported by suitable constructs at the programming language level. Context-oriented programming (COP)
is emerging as a novel paradigm for the implementation of this kind of software, in particular in the field
of mobile and ubiquitous computing. The COP paradigm tackles the issue of developing context-aware
systems at the language-level, introducing ad hoc language abstractions to manage adaptations modu-
larization and their dynamic activation. In this paper we review the state of the art in the field of COP in
the perspective of the benefits that this technique can provide to software engineers in the design and
implementation of context-aware applications.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Context-awareness is a primary issue in emerging fields such as
ubiquitous and mobile computing. In the design of context-aware
systems some challenges must be addressed. First, adaptation to
the current context is often an aspect that crosscuts the appli-
cation logic, so it is often orthogonal to the main modularization
direction. It is therefore difficult to organize the codebase in a way
that does not compromise maintainability and separation of con-
cerns. Furthermore, dynamic adaptation to the context requires
that an application modifies its behavior at runtime. While this is
not difficult to obtain in principle even with traditional techniques,
organizing dynamic behavioral change in a systematic and effective
way requires careful engineering.

Over the years, several approaches have been proposed to sup-
port the design and development of context-aware software, at
different abstraction levels. These approaches mainly encompass
software architectures, component-based design, and middleware
(Chan and Chuang, 2003; Bellavista et al., 2003; Gu et al., 2005,
2004; Geihs et al., 2009; Capra et al., 2003). Context-oriented pro-
gramming (COP) (Hirschfeld et al., 2008) was recently proposed
as a complementary approach for supporting dynamic adaptation
to context conditions. COP provides language-level abstractions
to modularize behavioral adaptation concerns and to dynamically
activate them during the program execution.

∗ Corresponding author at: TU Darmstadt, Software Technology Group,
Hochschulstr. 10, 64289 Darmstadt, Germany.

E-mail addresses: salvaneschi@elet.polimi.it (G. Salvaneschi),
ghezzi@elet.polimi.it (C. Ghezzi), pradella@elet.polimi.it (M. Pradella).

In this work we review the achievements of context-oriented
programming and research advances in the perspective of the ben-
efits they can bring to the software engineering community in
general and specifically to the engineering of context-aware sys-
tems community. While so far COP has been mainly studied from a
programming language point of view, we argue that it can empower
software engineers committed to the design of context-aware sys-
tems with a very powerful approach and tool. The COP paradigm
provides an additional dimension to standard programming tech-
niques to dynamically switch among the behaviors associated with
each context, such as bandwidth availability, presence of WiFi
or data connection, battery level, or current system workload. In
addition, COP provides means to dynamically combine different
behaviors when all the associated contexts are active at the same
time and properly modularize the code for each behavior.

Our work tries to bridge the gap between the programming
languages and the software engineering communities, covering
the fundamental aspects which can be of interest for a software
architect such as the compilation process, modularization, dynamic
activation of adaptations, and consistency of behavioral variations.

Starting from the pioneering work of Costanza and Hirschfeld
(2005), COP evolved in a variety of solutions addressing in differ-
ent ways the problems of behavioral variations modularization and
their dynamic activation. The proposed languages share the con-
cept of language-level runtime adaptation to context, but interpret
the paradigm in different ways. Therefore, at present COP is con-
stituted by a family of languages specifically developed to support
context adaptation, with some widely adopted design solutions and
many (sometimes radically) different variants.

In the exposition we adopted the following criteria. We set up
our analysis centering it on layer-based (Hirschfeld et al., 2008)

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.03.024

dx.doi.org/10.1016/j.jss.2012.03.024
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:salvaneschi@elet.polimi.it
mailto:ghezzi@elet.polimi.it
mailto:pradella@elet.polimi.it
dx.doi.org/10.1016/j.jss.2012.03.024

1802 G. Salvaneschi et al. / The Journal of Systems and Software 85 (2012) 1801– 1817

COP languages, because they represent the majority of the existing
approaches and the most influential efforts in the research commu-
nity. Single implementations which do not fall into this category
and present ad hoc solutions are also introduced, if they present a
feature that is particularly relevant to the discussion.

The paper is organized as follows: In Section 2 we introduce the
fundamental concepts of COP. In Section 3 we present the main
COP flavors that have been implemented so far. In Section 4 we
show an overview of COP existing software and application areas.
In Section 5 we analyze the related work and in Section 6 we discuss
a roadmap for future research. Section 7 draws the conclusions.

2. Fundamental concepts

In this section we present the foundations of the COP paradigm.
We adopt a top-down approach, which starts from the abstract
notion of context and then focuses on behavioral variations that
conceptually enable context-aware adaptation.

The notion of context traditionally adopted in COP is open and
pragmatic: any computationally accessible information can be con-
sidered as context (Hirschfeld et al., 2008). Such a definition can
be surprisingly vague, but practice with context-aware systems
confirms its validity. First of all, the definition does not limit the
context to the information reaching the system from outside (i.e.
the environment), but it also encompasses information originating
inside the system boundaries, such as performance monitoring or
intrusion detection. Moreover, such a general approach does not
prescribe any restriction to the level of abstraction through which
the context is represented inside the system. In fact in a typical
context-aware application context information is first obtained by
sensors in the form of numerical observables. For example, the
bandwidth consumption on a network interface can be quantified
as 100 Mb/s or the processor is observed to be busy 95% of the time.
Often these values are abstracted and combined to obtain some
symbolic observable. For example, the measured processor usage
can be associated with the heavy load condition.

A point on which COP approaches differ is whether a unique
global context exists or different parts of the system can live in
separate contexts. The Ambience programming language (González
et al., 2008) adopts a model whereby the whole application shares
the same global context. This model reflects the intuitive idea that
there is only one real-world context. Conversely, most COP lan-
guages (Appeltauer et al., 2009a) do not enforce uniqueness of
context and therefore different parts of the application, for exam-
ple different threads, can live in different contexts and therefore
adapt their behavior differently. While from a conceptual point of
view a unique context leads to a more elegant and intuitive model,
the possibility of exploiting multiple contexts in the same applica-
tion is more flexible in practice. For example it allows each thread
of a server-side software to independently adapt to the specific
conditions of the client which is currently in charge of.

A key concept of COP is the behavioral variation (Hirschfeld
et al., 2008), which is a unit of behavior that can be made effec-
tive (partially) modifying the overall behavior of the application.
A behavioral variation is enabled by means of a variation activa-
tion. Runtime context adaptation is achieved in COP by dynamically
(i.e. during the execution) activating behavioral variations. When
multiple variations are active at the same time, they dynamically
combine to generate the emerging application behavior. In COP the
role of variations is twofold. On the one hand, they allow dynamic
activation of a behavioral change; on the other hand, they are the
modularization unit of such behavioral fragment.

Over the years, this conceptual framework has been interpreted
in different ways, originating a variety of different solutions. How-
ever the model based on layers is by far the most widespread. For

this reason, through the paper we generally refer to this model,
pinpointing the existence of alternative solutions where needed.
Layers (Costanza and Hirschfeld, 2005) are a language abstraction
which groups partial method definitions implementing behavioral
fragments conceptually related to the same aspect of the applica-
tion context. In Fig. 1 we show a simplified implementation of an
adaptable storage implemented using COP concepts. This is a run-
ning example that we adopt throughout the paper. In the example
and in the rest of the paper, where not explicitly said, we adopt a
Java-like language, properly augmented with the features required
for the explanation. Details not essential for the discussion, such
as some type declarations or modifiers, are omitted. By calling the
getItem method, the storage can be queried for a resource, which is
by default searched on disk. The getItem method is partially rede-
fined inside the logLayer layer and in the cacheLayer layer. The
logLayer layer implements logging facilities and the cacheLayer
layer adds a caching mechanism, which improves the response
time. When getItem is called on an instance of the Storage class,
if no layer is active the original version is executed, otherwise a
partial definition in the active layer is executed.

Several solutions have been proposed in COP for layer activation.
They are discussed in detail in Section 3. In the example of Fig. 1,
the with keyword activates the given layers for the scoped block.
As a convention, the last activated layer comes first in the exe-
cution. If more than one layer is active, the partial definitions are
dynamically combined to get the resulting execution. For example
if the logLayer layer and the cacheLayer are both active, log-
ging and caching behaviors are obtained at the same time. Layers
combination is achieved through the proceed keyword, which is
similar to proceed in aspect oriented programming or super in
object-oriented languages. Through proceed, the partial definition
in the next active layer is executed. If no further partial definition is
present in the active layers sequence, the original implementation
is called.

In most COP languages layers are first class entities in the sense
that they can be assigned to variables, passed as function parame-
ters and returned as values. This is the fundamental way in which
different parts of the program can communicate the adaptation to
be performed.

In the paper we use the following conventions taken from Lincke
et al. (2011): layered method definition are method definitions for
which a partial method definition is present. These methods are
dispatched according to the context-oriented semantics. Standard
object-oriented method definitions are referred to as plain method
definition and are not affected by the presence of layers.

For convenience, we list the existing COP languages in Table 1.
For each language, we describe a distinguishing feature that char-
acterizes it, and we refer to the literature for further study.

3. Flavors of context-oriented programming

In this section we present COP in more detail, discussing an
overview of the features of the available implementations and the
variations to the basic model described so far. We adopt the fol-
lowing approach. First we review the implementation techniques
adopted for COP languages, which have a significant impact on
their usage. For example, library-based implementations are easier
to integrate with existing projects while ad hoc source-to-source
compilers can be harder to be accepted in an established develop-
ment system and can break tool compatibility. Then we consider
the dynamic aspects of COP, i.e. how behavioral variations are acti-
vated. In many cases the with-based dynamically scoped activation
is not adequate; for example due to the design of the application, it
may be necessary to perform the activation on single objects rather
than on control flows. We analyze the static aspect of COP, which is

Download English Version:

https://daneshyari.com/en/article/461917

Download Persian Version:

https://daneshyari.com/article/461917

Daneshyari.com

https://daneshyari.com/en/article/461917
https://daneshyari.com/article/461917
https://daneshyari.com

