
The Journal of Systems and Software 85 (2012) 1915– 1929

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Validated templates for specification of complex LTL formulas

Salamah Salamaha,∗, Ann Gatesb, Vladik Kreinovichb

a Department of Electrical, computer, Software, and Systems Engineering, Embry Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114, United States
b Department of Computer Science, University of Texas at El Paso, 500 W. University Blvd., El Paso, TX 79968, United States

a r t i c l e i n f o

Article history:
Received 3 January 2011
Received in revised form 7 February 2012
Accepted 19 February 2012
Available online 7 March 2012

Keywords:
Formal specifications
LTL
Pattern
Scope
Composite propositions
Model checking

a b s t r a c t

Formal verification approaches that check software correctness against formal specifications have been
shown to improve program dependability. Tools such as Specification Pattern System (SPS) and Property
Specification (Prospec) support the generation of formal specifications. SPS has defined a set of patterns
(common recurring properties) and scopes (system states over which a pattern must hold) that allows
a user to generate formal specifications by using direct substitution of propositions into parameters of
selected patterns and scopes. Prospec extended SPS to support the definition of patterns and scopes that
include the ability to specify parameters with multiple propositions (referred to as composite proposi-
tions or CPs), allowing the specification of sequential and concurrent behavior. Prospec generates formal
specifications in Future Interval Logic (FIL) using direct substitution of CPs into pattern and scope param-
eters. While substitution works trivially for FIL, it does not work for Linear Temporal Logic (LTL), a highly
expressive language that supports specification of software properties such as safety and liveness. LTL
is important because of its use in the model checker Spin, the ACM 2001 system Software Award win-
ning tool, and NuSMV. This paper introduces abstract LTL templates to support automated generation
of LTL formulas for complex properties in Prospec. In addition, it presents formal proofs and testing to
demonstrate that the templates indeed generate the intended LTL formulas.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Today more than ever, society depends on complex software
systems to fulfill personal needs and to conduct business. Software
is an integral part of many mission and safety critical systems. In
transit systems, for example, software is used in railway signaling,
train control, fault detection, and notification systems among other
things (Lin, 2004). Implanted drug delivery pumps, pacemakers
and defibrillators, and automated cancer cell and DNA-based diag-
nostics systems are examples of medical equipment built around
embedded software systems (MacKenzie, 1999). The National
Aeronautics and Space Administration (NASA) Space Shuttle pro-
gram, a multi-billion dollar program built on computer software
and hardware, is an example of a safety critical system that could
lead to the loss of life and huge finances if it fails.

Because of society’s dependence on computers, it is vital to
assure that software systems behave as intended. The estimated
cost due to software errors in the aerospace industry alone was
$6 billion in 1999 (The Economic Impacts, 2002). The numbers are
even more alarming when considering that software errors cost
U.S. economy $59.5 billion annually (NIST, 2002). It is imperative

∗ Corresponding author. Tel.: +1 3862264919; fax: +1 3862266678.
E-mail address: salamahs@erau.edu (S. Salamah).

that the software industry continue to invest in software assurance
approaches, techniques, and tools.

Although the use of formal verification methods such as model
checking (Holzmann, 2004), theorem proving (Rushby, 2000), and
runtime monitoring (Stolz and Bodden, 2005) has been shown
to improve the dependability of programs, software development
professionals have yet to adopt them. The reasons for this hesitance
include the high level of mathematical sophistication required for
reading and/or writing formal specifications needed for the use of
these approaches (Hall, 1990).

Linear Temporal Logic (LTL) (Manna and Pnueli, 1991) is a
prominent formal specification language that is highly expressive
and widely used in formal verification tools such as the model
checkers SPIN (Holzmann, 2004) and NuSMV (Cimatti et al., 1999).
LTL is also used in the runtime verification of Java programs
(Havelund and Pressburger, 2000).

Formulas in LTL are constructed from elementary propositions
and the usual Boolean operators for not, and, or, imply (¬, ∧, ∨, →,
respectively). In addition, LTL provides the temporal operators next
(X), eventually (♦), always (�), until, (U), weak until (W), and release
(R). These formulas assume discrete time, i.e., states s = 0, 1, 2, . . .
The meaning of the temporal operators is straightforward1:

1 In this work we only consider the first four of these operators.

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.02.041

dx.doi.org/10.1016/j.jss.2012.02.041
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:salamahs@erau.edu
dx.doi.org/10.1016/j.jss.2012.02.041

1916 S. Salamah et al. / The Journal of Systems and Software 85 (2012) 1915– 1929

• The formula Xp holds at state s if p holds at the next state s + 1,
• the formula p U q holds at state s, if there is a state s′ ≥ s at which

q is true and, if s′ is such a state, then p is true at all states si for
which s ≤ si < s′,

• the formula ♦p holds at state s if p is true at some state s′ ≥ s, and
• the formula �p holds at state s if p is true at all states s′ ≥ s.

One problem with LTL is that, when specifying software proper-
ties, the resulting LTL expressions can become difficult to write and
understand. For example, consider the following LTL specification:
�(a → ♦ (p ∧ ♦ ((¬ a) ∧ ¬ p))), where a denotes “Train approaches the
station.” and p denotes “Train passes the station.” It is not imme-
diately obvious that the specification describes the following: “If
a train approaches the station, then the train will pass the station
and, after it passes, the train does not approach or pass the station.”

To assist users in the generation of LTL specifications, Dwyer
et al. (1999) (http://patterns.projects.cis.ksu.edu/) defined a set of
patterns to represent the most commonly used formal properties.
The work also defined a set of scopes of system execution where
the pattern of interest must hold. Each pattern and scope combina-
tion can be mapped to specifications in multiple formal languages
including LTL. Using the notions of patterns and scopes a user can
define system properties in LTL without being an expert in the lan-
guage. Section 2 provides more details on SPS’ patterns and scopes.

In SPS, patterns and scopes parameters are defined using atomic
propositions (i.e., each pattern and scope parameter is defined
using a single proposition with a single truth value). To extend
the expressiveness of SPS, Mondragon et al. (2004) and Mondragon
and Gates (2004) developed the Property Specification (Prospec)
tool. Prospec attempts to extended SPS through the definition of a
set of composite propositions (CP) classes with the intent of using
these to define pattern and scope parameters. A complete descrip-
tion of Mondragon’s composite proposition classes can be found in
Section 2.

Although SPS provides LTL formulas for basic patterns and
scopes (ones that use single, “atomic”, propositions to define
parameters) and Mondragon and Gates (2004) provided LTL seman-
tics for the CP classes as described in Table 1. below, in most cases
it is not adequate to simply substitute the LTL description of the
CP class into the basic LTL formula for the pattern and scope com-
bination. We delay the introduction of a formal example of this
inadequacy after Section 2 where we describe the notions of pat-
tern, scope, and CP in more details.

This work aims at creating high-level LTL templates that can be
used to define LTL formulas for complex system properties. These
LTL templates take as an input a combination of pattern, scope, and
CP classes that describe the desired property. The output of the
templates is an LTL formula that can be used by formal verification
tools such as model checkers. However, in order to be able to com-
bine patterns, scopes, and CP classes to generate LTL formulas, we
first need to provide a precise definition of the semantics of each
pattern and scope when used in conjunction with CP classes and
vice versa. Providing these formal definitions is a secondary goal of
this paper.

The rest of the paper is organized as follows; Section 2 provides
the background of the work including SPS’ patterns and scopes, as
well as a more detailed description of the CP classes introduced by
Mondragon. Section 2 also includes an example to show the prob-
lems that can arise when using direct substitution within LTL. In
Section 3 we provide a formal definition of the meaning of patterns
and scopes when defined using CP classes. Section 4 introduced a
new LTL operators that will be used to simplify the abstract LTL tem-
plates. Those LTL templates are described in Section 5 along with an
example of their use. In Section 6 we show the methods we used to
validate that the LTL templates generate LTL that meet the original
meaning of the selected pattern, scope, and CP combination. The

paper concludes with summary and future work followed by the
references.

2. Background

This section provides the background information needed for
the rest of the paper. We describe the notions of patterns, scopes as
defined by Dwyer et al. (1999). We also describe Mondragon’s CP
classes as well as provide a more formal description of these classes.
These formal descriptions of CP classes are necessary for describing
the semantics of patterns and scopes that use CP classes, which we
introduce in Section 3.

2.1. Specification pattern system

Writing formal specifications, particularly those involving time,
is difficult. The Specification Pattern System (SPS) (Dwyer et al.,
1999) provides patterns and scopes to assist the practitioner in for-
mally specifying software properties. Patterns capture the expertise
of developers by describing solutions to recurrent problems. Each
pattern describes the structure of specific behavior and defines
the pattern’s relationship with other patterns. Patterns are asso-
ciated with scopes that define the portion of program execution
over which the property holds.

The main patterns defined by SPS are: Universality,
Absence, Existence, Precedence, and Response. The descrip-
tions given below are taken verbatim from the SPS website
(http://patterns.projects.cis.ksu.edu/).

• Absence(P): To describe a portion of a system’s execution that is
free of certain event or state (P).

• Universality(P): To describe a portion of a system’s execution
which contains only states that have the desired property (P).
Also known as Henceforth and Always.

• Existence(P): To describe a portion of a system’s execution that
contains an instance of certain events or states (P). Also known
as Eventually.

• Precedence(P, Q): To describe relationships between a pair of
events/states where the occurrence of the first (Q) is a necessary
pre-condition for an occurrence of the second (P). We say that an
occurrence of the second is enabled by an occurrence of the first.

• Response(P, Q): To describe cause-effect relationships between a
pair of events/states. An occurrence of the first (P), the cause, must
be followed by an occurrence of the second (Q), the effect. Also
known as Follows and Leads-to.

In SPS, each pattern is associated with a scope that defines the
extent of program execution over which a property pattern is con-
sidered. There are five types of scopes defined in SPS: Global, Before
R, After L, Between L And R, and After L Until R. Global denotes the
entire program execution; Before R denotes the execution before
the first time the condition R holds; After L denotes execution
after the first time L holds; Between L And R denotes the execu-
tion between intervals defined by L and R; and After L Until denotes
the execution between intervals defined by L and R and, in the case
when R does not occur, until the end of execution.

The SPS website provides patterns and scopes for formal
specification languages such as Linear Temporal Logic (LTL), Com-
putational Tree Logic (CTL), and Graphical Interval Logic (GIL).
These formulas are provided for patterns and scopes involving sin-
gle (atomic) propositions, i.e., patterns and scopes in which P, Q,
L, and R each of which occur at a single state of execution. The
website also provides examples of properties that can be defined
using these patterns and scopes. For example, the property “When
a connection is made to the SMTP server, all queued messages in

http://patterns.projects.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/

Download English Version:

https://daneshyari.com/en/article/461924

Download Persian Version:

https://daneshyari.com/article/461924

Daneshyari.com

https://daneshyari.com/en/article/461924
https://daneshyari.com/article/461924
https://daneshyari.com

