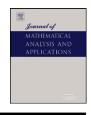


Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications



www.elsevier.com/locate/jmaa

On a class of degenerate and singular elliptic systems in bounded domains

Nguyen Thanh Chung^{a,*}, Hoang Quoc Toan^b

^a Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Viet Nam
^b Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam

ARTICLE INFO

Article history: Received 4 March 2009 Available online 2 July 2009 Submitted by V. Radulescu

Keywords: Degenerate Singular Semilinear elliptic systems Minimum principle Mountain pass theorem Nonexistence Multiplicity

ABSTRACT

This paper deals with the nonexistence and multiplicity of nonnegative, nontrivial solutions to a class of degenerate and singular elliptic systems of the form

 $\begin{aligned} -\operatorname{div}(h_1(x)\nabla u) &= \lambda F_u(x, u, v) \quad \text{in } \Omega, \\ -\operatorname{div}(h_2(x)\nabla v) &= \lambda F_v(x, u, v) \quad \text{in } \Omega, \end{aligned}$

where Ω is a bounded domain with smooth boundary $\partial \Omega$ in \mathbb{R}^N , $N \ge 2$, and $h_i : \Omega \to [0, \infty)$, $h_i \in L^1_{loc}(\Omega)$, h_i (i = 1, 2) are allowed to have "essential" zeroes at some points in Ω , $(F_u, F_v) = \nabla F$, and λ is a positive parameter. Our proofs rely essentially on the critical point theory tools combined with a variant of the Caffarelli–Kohn–Nirenberg inequality in [P. Caldiroli, R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations Appl. 7 (2000) 189–199].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we are concerned with a class of semilinear elliptic systems of the form

$(-\operatorname{div}(h_1(x)\nabla u) = \lambda F_u(x, u, v))$	in Ω ,	
$-\operatorname{div}(h_2(x)\nabla u) = \lambda F_v(x, u, v)$	$\operatorname{in} \Omega$, (1)	1.1)
u = v = 0	on $\partial \Omega$,	

where Ω is a bounded domain in \mathbb{R}^N ($N \ge 2$), (F_u , F_v) = ∇F stands for the gradient of F in the variables $w = (u, v) \in \mathbb{R}^2$ and λ is a positive parameter. We point out the fact that if $h_1(x) = h_2(x) \equiv 1$, the problem was intensively studied in the last decades. We refer to some interesting works [3,8,10,17,23].

In a recent paper [6], P. Caldiroli and R. Musina have considered the Dirichlet elliptic problem of the form

$$-\operatorname{div}(h(x)\nabla u) = f(x, u) \quad \text{in } \Omega,$$

(1.2)

where Ω is a (bounded or unbounded) domain in \mathbb{R}^N ($N \ge 2$), and h is a nonnegative measurable weighted function that is allowed to have "essential" zeroes at some points in Ω , i.e., the function h can have at most a finite number of zeroes in Ω . More precisely, the authors assumed that there exists an exponent $\alpha \in (0, 2]$ such that the function h decreases more slowly than $|x - z|^{\alpha}$ near every point $z \in h^{-1}\{0\}$. Then, they proved some interesting compact results and obtained the existence of a nontrivial solution for (1.2) in a suitable function space using the Mountain pass theorem [1]. These results were used to

* Corresponding author. E-mail addresses: ntchung82@yahoo.com (N.T. Chung), hq_toan@yahoo.com (H.Q. Toan).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,$ © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.06.073 $\,$

study the existence of a solution for a class of degenerate elliptic systems by N.B. Zographopoulos [22] and G. Zhang et al. [24].

In [22], N.B. Zographopoulos considered the degenerate semilinear elliptic systems of the form

$$\begin{cases} -\operatorname{div}(h_1(x)\nabla u) = \lambda \mu(x)|u|^{\gamma-1}|v|^{\delta+1} & \text{in } \Omega, \\ -\operatorname{div}(h_2(x)\nabla v) = \lambda \mu(x)|u|^{\gamma+1}|v|^{\delta-1} & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.3)

where the functions $h_i \in L^1_{loc}(\Omega)$ and h_i (i = 1, 2) are allowed to have "essential" zeroes at some points in Ω , the function $\mu \in L^{\infty}(\Omega)$ and may change sign in Ω , λ is a positive parameter and the nonnegative constants γ , δ satisfy the following conditions

$$\begin{split} & \gamma+1$$

Using arguments of Mountain pass type [1], the author showed the existence of a nontrivial solution of (1.3) in the supercritical case, i.e.

$$\frac{\gamma+1}{2} + \frac{\delta+1}{2} > 1. \tag{1.4}$$

In the critical case $\gamma = \delta = 0$, the author also established the existence of a positive principal eigenvalue λ_1 for system (1.3) and some perturbations of its.

Motivated by the results in [2,6,8,18,22], G. Zhang et al. [24] obtained some existence results for (1.1) under subcritical growth conditions and the primitive F(x, u, v) being intimately related to the first eigenvalue of a corresponding linear system.

In the present paper, we consider system (1.1) with the functions h_i (i = 1, 2) as in [22] and [24]. Under the suitable conditions on the nonlinearities $F_u(x, u, v)$ and $F_v(x, u, v)$, using the Minimum principle (see [20, p. 4, Theorem 1.2]) and the Mountain pass theorem of A. Ambrosetti and P. Rabinowitz [1], we show that system (1.1) has at least two nonnegative, nontrivial solutions provided that λ is large enough. We also prove that the system has no nontrivial solution in case when the parameter λ is small enough. Thus, these results are completely natural extensions from [22] and [24]. Our paper is motivated by the interesting ideas introduced in [3,10,13,16]. In order to state our main results, we introduce next some hypotheses on the structure of the problem.

Throughout this paper, we assume the functions h_1 and h_2 satisfying the following conditions:

(**H**₁) The function $h_1: \Omega \to [0, \infty)$ belongs to $L^1_{loc}(\Omega)$ and there exists a constant $\alpha \ge 0$ such that

$$\lim_{x \to \infty} \inf |x - z|^{-\alpha} h_1(x) > 0 \quad \text{for all } z \in \overline{\Omega}.$$

(**H**₂) The function $h_2: \Omega \to [0, \infty)$ belongs to $L^1_{loc}(\Omega)$ and there exists a constant $\beta \ge 0$ such that

$$\lim_{x\to z} \inf |x-z|^{-\beta} h_2(x) > 0 \quad \text{for all } z\in\overline{\Omega}.$$

It should be observed that a model example for (\mathbf{H}_1) (similar to (\mathbf{H}_2)) is that $h_1(x) = |x|^{\alpha}$ (see [11,12]). The case $\alpha = 0$ covers the "isotropic" case corresponding to the Laplacian operator. In [6], the conditions (\mathbf{H}_1) and (\mathbf{H}_2) were excellently used by P. Caldiroli and R. Musina. The authors proved that if a function h satisfies the conditions as in (\mathbf{H}_1) (similar to (\mathbf{H}_2)), then there exist a finite set $Z = \{z_1, z_2, ..., z_k\} \subset \overline{\Omega}$ and numbers $r, \delta > 0$ such that the balls $B_i = B_r(z_i)$ (i = 1, 2, ..., k) are mutually disjoint and

$$h(x) \geq \delta |x-z_i|^{\alpha} \quad \forall x \in B_i, \ i=1,2,\ldots,k,$$

and

$$h(x) \ge \delta \quad \forall x \in \overline{\Omega} \setminus \bigcup_{i=1}^{k} B_i$$

This says the conditions (**H**₁) and (**H**₂) implying that the elliptic operators in system (1.1) are degenerate and singular. Moreover, the sets $Z_{h_1} = \{x \in \overline{\Omega}: h_1(x) = 0\}$ and $Z_{h_2} = \{z \in \overline{\Omega}: h_2(z) = 0\}$ are finite, the potentials $h_1(x)$ and $h_2(x)$ respectively behave like $|x|^{\alpha}$ and $|x|^{\beta}$ around their degenerate points. Such problems come from the consideration of standing waves in anisotropic Schrödinger systems (see [15]). They arise in many areas of applied physics, including nuclear physics, field Download English Version:

https://daneshyari.com/en/article/4619278

Download Persian Version:

https://daneshyari.com/article/4619278

Daneshyari.com