
The Journal of Systems and Software 83 (2010) 1651–1661

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

A model checker for WS-CDL

Hongbing Wanga,∗, Zuling Kanga, Ning Zhoua, Li Lib

a School of Computer Science and Engineering, Southeast University, Nanjing, PR China
b Faculty of Computers and Information Science, Southwest University, Chongqing 400715, PR China

a r t i c l e i n f o

Article history:
Received 15 March 2009
Received in revised form
24 December 2009
Accepted 30 March 2010
Available online 15 June 2010

Keywords:
Web service composition
TLA
WS-CDL
TLA4CDL
Model checker

a b s t r a c t

Service computing is becoming the prominent paradigm for distributed computing and electronic busi-
nesses. It enables developers to rapidly create their own software to meet the demands of their business
processes, by composing existing services, especially Web services distributed on the Internet. WS-CDL
is a W3C-proposed language for Web service composition, featuring the peer description of composite
Web services amongst multiple participants. Since the traditional model checking methods based on the
linear temporal logic (LTL) has limit in expressing the state-action relationship for a composite Web ser-
vice model, this paper proposes a new approach, based upon the idea of Temporal Logic of Actions (TLA),
to model check the composite Web services described in WS-CDL. In this paper, WS-CDL is extended
by a new sub-language for expressing the temporal and action restriction properties, named TLA4CDL.
The expressiveness of TLA4CDL is also discussed. The optimizing method called partial order reduction
is introduced, followed by the discussion of the model checker algorithm. This leads to the development
and implementation of the WS-CDL model checker. Finally, several test scenarios are provided in order to
validate the WS-CDL model checker. The experimental results demonstrate this model checker is capa-
ble of detecting deadlock and verifying the specified constraint attributes by TLA4CDL. A comparison of
experimental results with and without the partial order reduction method shows that our checker has
better performance.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The promise of reusability in software systems has become a
common theme in commercial application development in recent
years. It is elaborated with the development of Web services and the
generic concept of Service-Oriented Architecture (SOA). Web ser-
vices are autonomous software systems identified by URIs, which
can be advertised, located, and accessed through messages encoded
according to XML-based standards, and transmitted using Internet
protocols. They are designed to support interoperable machine-to-
machine interaction over a network, and are now becoming the
main building blocks of the SOA. The SOA is a computing paradigm
that utilizes services as fundamental elements for developing appli-
cations/solutions (Tan et al., 2009; Ardagna and Pernici, 2007; Oh
et al., 2008; Lécué et al., 2008), with the help of service composi-
tion/collaboration technology such as WS-BPEL (OASIS, 2007) and
WS-CDL (Kavantzas et al., 2005). Because Web services are based on
the open and widely accepted protocols (e.g. HTTP and SOAP), they
are capable of providing a uniform distributor for a wide range of

∗ Corresponding author.
E-mail addresses: hbw@seu.edu.cn (H. Wang), lily@swu.edu.cn (L. Li).

computing devices and software platforms. Web services and SOA
constitute the next major step in software engineering.

WS-CDL is a Web service collaboration specification for peer
participants. It resides in the collaboration layer of the service pro-
tocol stack, and stands on a global viewpoint and describes the
common and complementary observable behavior of all the partici-
pants involved (Kavantzas et al., 2005). The global nature of WS-CDL
is capable of providing behaviors of all parties participating in a
composition process within one single WS-CDL document, which
presents extra convenience in some fields like modeling, reasoning
and verification.

The intended users of WS-CDL include IT engineers and business
analysts. In practice, organizations involved in a collaborative busi-
ness process will negotiate on how this multiple participant related
process should be carried out. Such negotiation usually includes the
conditional and temporal constraints on some key properties and
actions. When the negotiation is completed, the outcome can be
drafted as Web service choreography in WS-CDL. Accordingly, each
participant is able to create its own part of collaborative processes
based on the description of the choreography.

A typical WS-CDL scenario might involve multiple parties, for
example, a consumer, a retailer, a bank and a shipper. Initially, the
consumer places an order by sending a message to the retailer. The

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.03.076

dx.doi.org/10.1016/j.jss.2010.03.076
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:hbw@seu.edu.cn
mailto:lily@swu.edu.cn
dx.doi.org/10.1016/j.jss.2010.03.076

1652 H. Wang et al. / The Journal of Systems and Software 83 (2010) 1651–1661

retailer confirms the ordering request and sends back the bank-
ing account number. To speed up the whole process, the retailer
instructs the shipper to deliver the product while the retailer waits
for payment confirmation from the bank. However, the product
can only be handed to the consumer after the payment has been
confirmed and received by the retailer.

The product delivery activity and payment activity can be exe-
cuted in parallel in the above retailer-shipper scenario. While
introducing the parallel structure into WS-CDL has a lot of
advantages, it also makes the encoded WS-CDL choreography
error-prone. In this scenario, a rule may be enforced that the
product cannot be handed to the consumer before the payment
confirmation arrives at the retailer.1 Trivial bugs might have been
introduced because of this. Some bugs are so trivial that they can
be difficult to find manually. Instead, automatic methods such as
formal verification are more favored.

Although formal verification of composite Web services con-
stitutes an essential part in studying WS-CDL, the WS-CDL
specification itself does not provide any facilities to support this
functionality. Amongst the work in WS-CDL verification research,
a commonly used method is to translate a WS-CDL document
into the Promela model (Holzmann, 1991), describe the constraint
attributes with the expression of LTL (Pnueli, 1981), and use
SPIN (Holzmann, 1997) to model check (Vardi and Wolper, 1986;
Courcoubetis et al., 1992) whether the model satisfies the expres-
sion (Zhao et al., 2006). However, there are some issues regarding
this method.

The first issue is the expressiveness of LTL. LTL is a popular for-
mal toolkit used in model checking, but it has some other issues.
For instance, traditional LTL does not allow relating specifications
to be written at different levels of abstraction since it is based on a
global notion of ‘next state’ (Lamport, 1983). This limitation makes
LTL inconvenient in dealing with relationships between states and
actions in a software system. For example, we often need to express
attributes such as ‘continuously sending the connecting requests
before the server acknowledges’ or ‘the server accepting or reject-
ing these connecting requests’. It is unlikely to be able to express
these attributes with LTL alone.

One of solutions here is to employ the state pairs, such as <s, s′>,
to represent the actions. Suppose there is an action ˛1 = <s1, s2>,
then �˛1 (the semantics of this LTL formula are defined as: globally
˛1 has to hold on the entire subsequent path) can be represented as
�(s1 ∧ Xs2) (the temporal operator Xs2 means that s2 has to be hold
in the next state). Initially, this trade-off seems feasible, but some
problems are actually hidden in it. Consider another action ˛2 to
be used to increase a state variable x by one each time it is invoked.
Suppose the domain of x is the integers below 1000, and si is used to
denote x = i in state s, then the LTL expression to indicate�˛2 will be
�(s1∧Xs2∨s2∧Xs3∨. . .∨s999∧Xs1000). It implies that the complexity
of the LTL model checking algorithm is 2O(|CLOSURE(ϕ)|)*O(|S|) (Clarke
et al., 2000; Huth and Ryan, 2004) withϕ the modal expressions and
S the number of the state space. Obviously, such a complex expres-
sion will take a great amount of time to perform model checking.
Note that some complex expressions used in practice cannot even
be computed in a finite amount of time.

To cope with this problem, a TLA-based formal language to
express the constraint attributes of a WS-CDL model is presented.
Temporal logic of actions (Lamport, 1994, 2002), or TLA, is a for-
mal language proposed by Lamport in the early 1990s. It aims at
describing and verifying parallel systems. It combines the proper-
ties of temporal logic and the logic of actions. The grammar and the
formal semantic of TLA is simple but without losing its expressive

1 We will show how to express this rule via the TLA4CDL constraint later Section
I. Briefly, TLA4CDL is a kind of TLA extension to WS-CDL.

Fig. 1. The TLA4CDL rule which enforces the rule in the retailer–shipper example
that ConformPayment has to occur before ConformDelivery.

power feature. Unlike LTL, TLA is able to express the state-action
relationship in parallel in the presence of actions. By using the
attributes in TLA, �˛2 in the previous example can be simply writ-
ten as �[x′ = x + 1]x. Moreover, when the above action expression is
model checked by TLC (Lamport, 2002) (the TLA model checker),
unlike LTL, it will not lead to exponential computing time as LTL
did.

The second issue is the definition of actions. In TLA, actions
are expressed by relationships of variables between two succes-
sive states. For example, when expressing the idea that variable x
will always increase by 1, it says in TLA that the value of x in the
next state is one greater than that of the current state and it is
always true, or �[x′ = x + 1]x in TLA formula. This action expressing
approach works well in handling hardware model or low-level soft-
ware model, since any action in a process will eventually change its
variable values. However, when dealing with high-level software
models like WS-CDL, it is not always the case.

To address this issue, let us reconsider the rule that must
be enforced in the retailer–shipper scenario. Suppose there are
two WS-CDL activities named ConfirmPayment and ConfirmDeliv-
ery respectively. Assume that in one occasion, ConfirmPayment
sends the tns:paymentConfirmation message from the bank to
the retailer while ConfirmDelivery sends the tns:confirmDelivery
message from the retailer to the shipper. Since the value of
the tns:paymentConfirmation variable is unpredictable, it can-
not be expressed via TLA’s method. The same is true for
tns:confirmDelivery. To solve this problem, high-level actions are
needed. With the characteristics of high-level actions in TLA4CDL,
we believe it is able to solve the above problem.

TLA4CDL is a formal language proposed in this paper to express
the temporal constraints of WS-CDL. As WS-CDL is closely related
to Web services, an invocation to a Web service operation can then
be defined as an action. Moreover, the basic activities and defined
choreographies of WS-CDL can also be defined as actions. These
actions are so called high-level actions defined in TLA4CDL.

With the retailer–shipper example, the enforced rule can be
expressed in TLA4CDL (shown in Fig. 1). We will revisit it in Section
5 to demonstrate the verification of this TLA4CDL constraint.

The elements enclosed within tla:predictDefinition are used to
define two actions, each of which refers to an activity used in WS-
CDL. The functor tla:sequential is a TLA4CDL functor which means
the actions listed in the actionRef attribute should be executed in
a specified order, i.e. according to Fig. 1, the action conformPay-
ment is required to execute before conformDeliver. The detailed
syntax, semantics and expressiveness of TLA4CDL will be discussed
in Section 3. It is worth noting that by introducing boolean com-
position (formally defined in Section 3.2) of seven basic functors,
the complexity of the TLA4CDL-based model checking algorithm is
successfully reduced compared with that of LTL.

The third issue is about TLA4CDL’s trade-off between expres-
siveness and performance, in which performance refers to the
complexity of the WS-CDL model checking algorithm. In TLA4CDL,
seven basic TLA4CDL functors and their boolean composition are
introduced to express the temporal constraints of a WS-CDL model.
Although the boolean composition method makes TLA4CDL not as
expressive as TLA, it is still good enough to express the commonly

Download English Version:

https://daneshyari.com/en/article/461930

Download Persian Version:

https://daneshyari.com/article/461930

Daneshyari.com

https://daneshyari.com/en/article/461930
https://daneshyari.com/article/461930
https://daneshyari.com

