

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Monotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomials

Dimitar K. Dimitrov a,*, Francisco Marcellán b, Fernando R. Rafaeli c

- ^a Departamento de Ciências de Computação e Estatística, IBILCE, Universidade Estadual Paulista, Brazil
- ^b Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Leganés-Madrid, Spain
- ^c Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Brazil

ARTICLE INFO

Article history: Received 15 December 2008 Available online 3 March 2010 Submitted by D. Waterman

Keywords:
Orthogonal polynomials
Laguerre polynomials
Sobolev-type orthogonal polynomials
Zeros
Monotonicity
Asymptotics

ABSTRACT

Denote by $x_{n,k}^{M,N}(\alpha)$, $k=1,\ldots,n$, the zeros of the Laguerre–Sobolev-type polynomials $L_n^{(\alpha,M,N)}(x)$ orthogonal with respect to the inner product

$$\langle p,q\rangle = \frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} p(x)q(x)x^{\alpha}e^{-x}dx + Mp(0)q(0) + Np'(0)q'(0),$$

where $\alpha>-1$, $M\geqslant 0$ and $N\geqslant 0$. We prove that $x_{n,k}^{M,N}(\alpha)$ interlace with the zeros of Laguerre orthogonal polynomials $L_n^{(\alpha)}(x)$ and establish monotonicity with respect to the parameters M and N of $x_{n,k}^{M,0}(\alpha)$ and $x_{n,k}^{0,N}(\alpha)$. Moreover, we find N_0 such that $x_{n,n}^{M,N}(\alpha)<0$ for all $N>N_0$, where $x_{n,n}^{M,N}(\alpha)$ is the smallest zero of $L_n^{(\alpha,M,N)}(x)$. Further, we present monotonicity and asymptotic relations of certain functions involving $x_{n,k}^{M,0}(\alpha)$ and $x_{n,k}^{0,N}(\alpha)$.

1. Introduction and statement of results

Consider the sequence of Laguerre–Sobolev-type polynomials $\{L_n^{(\alpha,M,N)}(x)\}_{n=0}^{\infty}$ which are orthogonal with respect to the inner product

$$\langle p, q \rangle = \frac{1}{\Gamma(\alpha + 1)} \int_{0}^{\infty} p(x)q(x)x^{\alpha}e^{-x}dx + Mp(0)q(0) + Np'(0)q'(0), \tag{1.1}$$

where $\alpha > -1$, $M \ge 0$ and $N \ge 0$. They were defined and studied first by Koekoek and Meijer [10]. Dueñas and Marcellán [7] considered the Laguerre–Sobolev-type orthogonal polynomials $\widehat{L}_n^{(\alpha,\widehat{M},\widehat{N})}(x)$ generated by the inner product

$$\langle p,q\rangle = \int_{0}^{\infty} p(x)q(x)x^{\alpha}e^{-x}dx + \widehat{M}p(0)q(0) + \widehat{N}p'(0)q'(0),$$

where $\alpha > -1$, $\widehat{M} \geqslant 0$ and $\widehat{N} \geqslant 0$. It is clear that the sequences $\{L_n^{(\alpha,M,N)}(x)\}_{n=0}^{\infty}$ and $\{\widehat{L}_n^{(\alpha,\widehat{M},\widehat{N})}(x)\}_{n=0}^{\infty}$ coincide when $\widehat{M} = \Gamma(\alpha+1)M$ and $\widehat{N} = \Gamma(\alpha+1)N$. Hence all the results concerning the zeros of $L_n^{(\alpha,M,N)}(x)$ obtained in this paper can be rewritten in an obvious manner substituting M by $\widehat{M}/\Gamma(\alpha+1)$ and N by $\widehat{N}/\Gamma(\alpha+1)$.

E-mail address: dimitrov@ibilce.unesp.br (D.K. Dimitrov).

^{*} Corresponding author.

Let $L_n^{(\alpha)}(x)$, $n=0,1,\ldots$, be the classical Laguerre polynomial, orthogonal with respect to the inner product

$$\langle p, q \rangle = \int_{0}^{\infty} p(x)q(x)x^{\alpha}e^{-x}dx$$

and normalized by (2.4) below. In the sequel we denote by $x_{n,k}(\alpha)$ the zeros of the Laguerre polynomial $L_n^{(\alpha)}(x)$ and by $x_{n,k}^{M,N}(\alpha)$, $x_{n,k}^{M}(\alpha)$, and $x_{n,k}^{N}(\alpha)$, and $x_{n,k}^{N}(\alpha)$ the zeros of $L_n^{(\alpha,M,N)}(x)$, $L_n^{(\alpha,M,0)}(x)$, and $L_n^{(\alpha,0,N)}(x)$, respectively, all arranged in decreasing order. We prove that the zeros $x_{n,k}^{M,N}(\alpha)$ interlace with the zeros $x_{n,k}^{M}(\alpha)$ when M,N>0 and establish the monotonicity of the zeros $x_{n,k}^{M}(\alpha)$ and $x_{n,k}^{N}(\alpha)$ with respect to the parameters M and N, respectively.

Theorem 1. The inequalities

$$x_{n,k+1}^{M,N}(\alpha) < x_{n,k+1}(\alpha) < x_{n,k}^{M,N}(\alpha) < x_{n,k}(\alpha)$$
(1.2)

hold for every $n \in \mathbb{N}$, $n \geqslant 2$, and each k with $1 \leqslant k \leqslant n-1$. Moreover, for every fixed n the smallest zero $x_{n,n}^{M,N}(\alpha)$ satisfies

$$x_{n,n}^{M,N}(\alpha) > 0$$
, for $N < N_0$,
 $x_{n,n}^{M,N}(\alpha) = 0$, for $N = N_0$,
 $x_{n,n}^{M,N}(\alpha) < 0$, for $N > N_0$,

where

$$N_0 = \frac{(\alpha+1)\Gamma(n-1)\Gamma(\alpha+4)}{\Gamma(n+\alpha+2)}.$$
(1.3)

It is quite interesting that N_0 does not depend on M.

In the case N=0 we obtain the following statement which was already derived by Dueñas and Marcellán [6].

Corollary 1. The inequalities

$$0 < x_{n,k+1}^{M}(\alpha) < x_{n,k+1}(\alpha) < x_{n,k}^{M}(\alpha) < x_{n,k}(\alpha)$$
(1.4)

hold for every $n \in \mathbb{N}$, $n \geqslant 2$, and each k with $1 \leqslant k \leqslant n-1$. Moreover, the smallest zero $x_{n,n}^M(\alpha)$ behaves like $\mathcal{O}(1/M)$ as M goes to infinity.

When M = 0 Theorem 1 yields:

Corollary 2. The inequalities

$$x_{n,k+1}^{N}(\alpha) < x_{n,k+1}(\alpha) < x_{n,k}^{N}(\alpha) < x_{n,k}(\alpha)$$
 (1.5)

hold for every $n \in \mathbb{N}$, $n \geqslant 2$, and each k with $1 \leqslant k \leqslant n-1$. Moreover, the smallest zero $x_{n,n}^N(\alpha)$ satisfies

$$x_{n,n}^{N}(\alpha) > 0$$
, for $N < N_0$, $x_{n,n}^{N}(\alpha) = 0$, for $N = N_0$, $x_{n,n}^{N}(\alpha) < 0$, for $N > N_0$,

where N_0 is given by (1.3).

Setting $N_0 = \widehat{N}_0/\Gamma(\alpha+1)$, we conclude that the smallest zero $\widehat{\chi}_{n,n}^{\widehat{N}}(\alpha)$ of the nth Laguerre–Sobolev-type orthogonal polynomial defined by Dueñas and Marcellán [7] satisfies

$$\widehat{x}_{n,n}^{\widehat{N}}(\alpha) > 0$$
, for $\widehat{N} < \widehat{N}_0$,
 $\widehat{x}_{n,n}^{\widehat{N}}(\alpha) = 0$, for $\widehat{N} = \widehat{N}_0$,
 $\widehat{x}_{n,n}^{\widehat{N}}(\alpha) < 0$, for $\widehat{N} > \widehat{N}_0$,

where

Download English Version:

https://daneshyari.com/en/article/4619323

Download Persian Version:

https://daneshyari.com/article/4619323

<u>Daneshyari.com</u>