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In this paper, we establish the strong convergence of possible solutions to the following
nonhomogeneous second order evolution system⎧⎨

⎩
u′′(t) + cu′(t) ∈ Au(t) + f (t) a.e. t ∈ (0,+∞),

u(0) = u0, sup
t�0

∣∣u(t)
∣∣ < +∞

to an element of A−1(0), with an exponential rate of convergence when f ≡ 0, where A
is a general maximal monotone operator in a real Hilbert space H , c > 0 is a real constant
and f : R

+ → H is a given function. We show also that the curve u is almost nonexpansive,
and present some applications of our result.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a real Hilbert space with inner product (.,.) and norm | . |. We denote strong convergence in H by →, and
weak convergence by ⇀. u′(t) (resp. u′′(t)) denotes du

dt (t) (resp. d2u
dt2 (t)). A (nonlinear) possibly multivalued operator in H is

a nonempty subset A of H × H . A is said to be monotone if (y2 − y1, x2 − x1) � 0 for all [xi, yi] ∈ A, i = 1,2. A is maximal
monotone if A is monotone and R(I + A) = H, where I is the identity operator on H . See [3,4] for more details.

Existence, as well as asymptotic behavior of solutions to second order evolution systems of the form

⎧⎨
⎩

u′′(t) ∈ Au(t) a.e. on R
+,

u(0) = u0, sup
t�0

∣∣u(t)
∣∣ < +∞ , (1)

were studied by many authors, among them, by Barbu [3], Bruck [5], Morosanu [13,14], Mitidieri [11,12], Poffald and Re-
ich [15,16], and the references therein. Véron [17] showed that even for A = ∂ϕ , solutions to (1) may not converge strongly
as t → +∞, although they always converge weakly.

In this paper, we study the strong convergence of possible solutions to the following nonhomogeneous second order
evolution system
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⎧⎨
⎩

u′′(t) + cu′(t) ∈ Au(t) + f (t) a.e. on R
+,

u(0) = u0, sup
t�0

∣∣u(t)
∣∣ < +∞, (2)

where A is a general maximal monotone operator in H , and c > 0. With suitable conditions on f , we show that the solution
always converges strongly to an element of A−1(0), actually with an exponential rate of convergence in the homogeneous
case ( f (t) ≡ 0). This study is motivated as a continuation of our previous work in [8–10], where the asymptotic behavior of
solutions to (2) was investigated for c � 0. Only weak convergence of solutions occurs in general in this case, and nothing
was known about the case c > 0. Amazingly, here we are able to prove the strong convergence of solutions for the case
c > 0, therefore giving also a strongly convergent process for approximating the zeros of a maximal monotone operator.
It is also worth mentioning that besides the applications of our results to partial differential equations and optimization
problems mentioned in Sections 3 and 4, our results are new even for the one-dimensional case of ordinary differential
equations (where of course weak and strong convergence coincide), such as e.g. bounded solutions to the following ordinary
differential equation: u′′(t) + 2u′(t) = u(t)3 − exp(−6t), u(0) = 1.

Existence theorems for (2) were studied by Véron [18,19] for f (t) ≡ 0, and by Apreutesei [1,2] for appropriate func-
tions f .

Throughout the paper we assume that f satisfies the following assumption:

There exists t0 > 0 such that

+∞∫
t0

t
∣∣ f (t) − f∞

∣∣dt < +∞ (3)

(i.e. t( f (t) − f∞) ∈ L1((t0,+∞); H)), for some f∞ ∈ H . By replacing f (t) by f (t) − f∞ , and A by A + f∞ , we may assume
without loss of generality that f∞ = 0. Now we recall and introduce some notations and definitions we shall use in what
follows.

Definition 1.1. A curve u in H is a function u ∈ C([0,+∞[, H). We denote σT := 1
T

∫ T
0 u(t)dt for T > 0.

Definition 1.2. By a solution u to (2) we mean a function u ∈ C([0, T ]; H) ∩ H2
loc((0, T ); H) for every T > 0, that satisfies (2)

for a.e. t ∈ R
+ .

We note that in this case u and u′ are absolutely continuous functions on each compact subinterval of R
+ .

Definition 1.3. The curve u in H is said to be almost nonexpansive if∣∣u(t + h) − u(s + h)
∣∣2 �

∣∣u(t) − u(s)
∣∣2 + ε(s, t), ∀s, t,h � 0,

where lims,t→+∞ ε(s, t) = 0. See [6,7].

2. Strong convergence theorem

In this section we establish the strong convergence of possible solutions to (2) as t → +∞, to an element of A−1(0).
First we prove the following lemmas.

Lemma 2.1. Assume h : R
+ → R is bounded above and absolutely continuous on every compact subinterval. Then

lim inf
t→+∞ h′(t) � 0.

Proof. Suppose to the contrary that lim inft→+∞ h′(t) � λ > 0. Integrating on [t0, t], we get

h(t) − h(t0) � λ(t − t0).

Letting t → +∞, we get a contradiction. �
Lemma 2.2. Assume h : R

+ → R is bounded above and h and h′ are absolutely continuous on every compact subinterval. If there
exists t0 such that h′′(t) � −g(t) for all t � t0 , where g(t) � 0 for all t � t0 , then

h(t) � h(s) +
∞∫

s

rg(r)dr

for all t � s � t0 .
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