

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation

Behzad Djafari Rouhani^{a,*}, Hadi Khatibzadeh^{b,c,1}

^a Department of Mathematical Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA

^b Department of Mathematics, Zanjan University, Zanjan, Iran

^c School of Mathematics, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746, Tehran, Iran

ARTICLE INFO

Article history: Received 12 February 2009 Available online 30 September 2009 Submitted by J.A. Ball

Keywords: Second order evolution equation Monotone operator Asymptotic behavior Strong convergence Almost nonexpansive curve

ABSTRACT

In this paper, we establish the strong convergence of possible solutions to the following nonhomogeneous second order evolution system

 $\begin{cases} u''(t) + cu'(t) \in Au(t) + f(t) & \text{a.e. } t \in (0, +\infty), \\ u(0) = u_0, & \sup_{t \ge 0} |u(t)| < +\infty \end{cases}$

to an element of $A^{-1}(0)$, with an exponential rate of convergence when $f \equiv 0$, where A is a general maximal monotone operator in a real Hilbert space H, c > 0 is a real constant and $f : \mathbb{R}^+ \to H$ is a given function. We show also that the curve u is almost nonexpansive, and present some applications of our result.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let *H* be a real Hilbert space with inner product (.,.) and norm |.|. We denote strong convergence in *H* by \rightarrow , and weak convergence by \rightarrow . u'(t) (resp. u''(t)) denotes $\frac{du}{dt}(t)$ (resp. $\frac{d^2u}{dt^2}(t)$). A (nonlinear) possibly multivalued operator in *H* is a nonempty subset *A* of $H \times H$. *A* is said to be monotone if $(y_2 - y_1, x_2 - x_1) \ge 0$ for all $[x_i, y_i] \in A$, i = 1, 2. *A* is maximal monotone if *A* is monotone and R(I + A) = H, where *I* is the identity operator on *H*. See [3,4] for more details.

Existence, as well as asymptotic behavior of solutions to second order evolution systems of the form

$$\begin{cases} u''(t) \in Au(t) & \text{a.e. on } \mathbb{R}^+, \\ u(0) = u_0, & \sup_{t \ge 0} |u(t)| < +\infty \end{cases},$$
(1)

were studied by many authors, among them, by Barbu [3], Bruck [5], Morosanu [13,14], Mitidieri [11,12], Poffald and Reich [15,16], and the references therein. Véron [17] showed that even for $A = \partial \varphi$, solutions to (1) may not converge strongly as $t \to +\infty$, although they always converge weakly.

In this paper, we study the strong convergence of possible solutions to the following nonhomogeneous second order evolution system

* Corresponding author.

E-mail addresses: behzad@math.utep.edu (B. Djafari Rouhani), hkhatibzadeh@znu.ac.ir (H. Khatibzadeh).

 $^{^1}$ This research was in part supported by a grant from IPM (No. 87470012).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,$ © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.09.057

$$\begin{cases} u''(t) + cu'(t) \in Au(t) + f(t) & \text{a.e. on } \mathbb{R}^+, \\ u(0) = u_0, & \sup_{t \ge 0} |u(t)| < +\infty, \end{cases}$$
(2)

where *A* is a general maximal monotone operator in *H*, and c > 0. With suitable conditions on *f*, we show that the solution always converges strongly to an element of $A^{-1}(0)$, actually with an exponential rate of convergence in the homogeneous case ($f(t) \equiv 0$). This study is motivated as a continuation of our previous work in [8–10], where the asymptotic behavior of solutions to (2) was investigated for $c \leq 0$. Only weak convergence of solutions occurs in general in this case, and nothing was known about the case c > 0. Amazingly, here we are able to prove the strong convergence of solutions for the case c > 0, therefore giving also a strongly convergent process for approximating the zeros of a maximal monotone operator. It is also worth mentioning that besides the applications of our results to partial differential equations and optimization problems mentioned in Sections 3 and 4, our results are new even for the one-dimensional case of ordinary differential equations (where of course weak and strong convergence coincide), such as e.g. bounded solutions to the following ordinary differential equation: $u''(t) + 2u'(t) = u(t)^3 - \exp(-6t)$, u(0) = 1.

Existence theorems for (2) were studied by Véron [18,19] for $f(t) \equiv 0$, and by Apreutesei [1,2] for appropriate functions f.

Throughout the paper we assume that f satisfies the following assumption:

There exists
$$t_0 > 0$$
 such that $\int_{t_0}^{+\infty} t \left| f(t) - f_\infty \right| dt < +\infty$ (3)

(i.e. $t(f(t) - f_{\infty}) \in L^1((t_0, +\infty); H)$), for some $f_{\infty} \in H$. By replacing f(t) by $f(t) - f_{\infty}$, and A by $A + f_{\infty}$, we may assume without loss of generality that $f_{\infty} = 0$. Now we recall and introduce some notations and definitions we shall use in what follows.

Definition 1.1. A curve u in H is a function $u \in C([0, +\infty[, H])$. We denote $\sigma_T := \frac{1}{T} \int_0^T u(t) dt$ for T > 0.

Definition 1.2. By a solution u to (2) we mean a function $u \in C([0, T]; H) \cap H^2_{loc}((0, T); H)$ for every T > 0, that satisfies (2) for a.e. $t \in \mathbb{R}^+$.

We note that in this case u and u' are absolutely continuous functions on each compact subinterval of \mathbb{R}^+ .

Definition 1.3. The curve *u* in *H* is said to be almost nonexpansive if

$$|u(t+h) - u(s+h)|^2 \leq |u(t) - u(s)|^2 + \varepsilon(s,t), \quad \forall s, t, h \geq 0$$

where $\lim_{s,t\to+\infty} \varepsilon(s,t) = 0$. See [6,7].

2. Strong convergence theorem

In this section we establish the strong convergence of possible solutions to (2) as $t \to +\infty$, to an element of $A^{-1}(0)$. First we prove the following lemmas.

Lemma 2.1. Assume $h : \mathbb{R}^+ \to \mathbb{R}$ is bounded above and absolutely continuous on every compact subinterval. Then

$$\liminf_{t\to+\infty}h'(t)\leqslant 0.$$

Proof. Suppose to the contrary that $\liminf_{t\to+\infty} h'(t) \ge \lambda > 0$. Integrating on $[t_0, t]$, we get

$$h(t) - h(t_0) \ge \lambda(t - t_0).$$

Letting $t \to +\infty$, we get a contradiction. \Box

Lemma 2.2. Assume $h : \mathbb{R}^+ \to \mathbb{R}$ is bounded above and h and h' are absolutely continuous on every compact subinterval. If there exists t_0 such that $h''(t) \ge -g(t)$ for all $t \ge t_0$, where $g(t) \ge 0$ for all $t \ge t_0$, then

$$h(t) \leqslant h(s) + \int_{s}^{\infty} rg(r) \, dr$$

for all $t \ge s \ge t_0$.

Download English Version:

https://daneshyari.com/en/article/4619651

Download Persian Version:

https://daneshyari.com/article/4619651

Daneshyari.com