
Agent-oriented software patterns for rapid and affordable robot programming

Antonio Chella a, Massimo Cossentino b,*, Salvatore Gaglio a,b, Luca Sabatucci a, Valeria Seidita a

a Dipartimento di Ingegneria Informatica, University of Palermo, Italy
b Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy

a r t i c l e i n f o

Article history:
Received 10 October 2008
Received in revised form 22 October 2009
Accepted 22 October 2009
Available online 4 November 2009

Keywords:
Multi-agent systems
Design patterns
Pattern oriented design
Robotics systems

a b s t r a c t

Robotic systems are often quite complex to develop; they are huge, heavily constrained from the non-
functional point of view and they implement challenging algorithms. The lack of integrated methods with
reuse approaches leads robotic developers to reinvent the wheel each time a new project starts. This
paper proposes to reuse the experience done when building robotic applications, by catching it into
design patterns. These represent a general mean for (i) reusing proved solutions increasing the final qual-
ity, (ii) communicating the knowledge about a domain and (iii) reducing the development time and
effort. Despite of this generality, the proposed repository of patterns is specific for multi-agent robotic
systems. These patterns are documented by a set of design diagrams and the corresponding implement-
ing code is obtained through a series of automatic transformations. Some patterns extracted from an
existing and freely available repository are presented. The paper also discusses an experimental set-up
based on the construction of a complete robotic application obtained by composing some highly reusable
patterns.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The process of building robotic systems is a complex task prin-
cipally because these are intricate systems where different catego-
ries of problems have to be faced. A robotic system encapsulates
algorithms that frequently derive from artificial intelligence and
the architecture often includes distributed and heterogeneous
components and must cope with real-time efficiency trade-offs.
Designing a robotic architecture implies not only modelling the ro-
bot hardware and managing its sensors and actuators, but also
modelling knowledge about the environment, and the ability to
perform intelligent behaviours.

Software development for robotic systems is still today more an
art than an engineering discipline. A few system developers have
complete control all over the software, and typically write it all
by themselves. There is an emerging demand for reuse techniques,
with the twofold aim of maintaining software quality factors
across projects (Nesnas et al., 2006; Schlegel, 2006; Dominguez-
Brito et al., 2004) and of easily communicating and disseminating
knowledge about robotic development issues (Schlegel, 2006). The
current state of the art in the development of robotic applications
suffers from several problems:

� Robotic application variability makes hard to create ad-hoc stan-
dards, unified architectures and methods, as well as to profitably
import them from other application domains (Nesnas et al.,
2001, 2006; Dominguez-Brito et al., 2004).

� Responsibilities and boundaries among applications, frame-
works and middleware are not universally defined (Schlegel,
2006). Reuse of code across projects may easily fail if not com-
plemented with design techniques.

� Several frameworks support the reuse of components, but a
standard model to create robotic components still lacks because
of the difficulty to find out a unified way to represent data and
processes (Nesnas et al., 2006; Schlegel, 2006). Moreover, it is
not clear the level of granularity to be used for building such
components in order to promote the reuse across varying frame-
works (Nesnas et al., 2001). Therefore a documentation process
would help the component integration process (Nesnas et al.,
2006; Cote et al., 2004; Dominguez-Brito et al., 2004).

� Development time and resource limits, typically occurring for
experimental robotic systems, demand for environments and
tools for fast prototyping of applications and for verifying and
testing the system (Nesnas et al., 2006;Cote et al., 2004). These
tools would minimize the effort spent for secondary aspects of
the system, like component integration or system documenta-
tion, and would maximize the effort for research objectives.

By now the agent paradigm seems to be one of the most inter-
esting choices for developing a robotic application by following a
rigorous design process (Alami et al., 1998; Dominguez-Brito

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.10.035

* Corresponding author.
E-mail addresses: chella@unipa.it (A. Chella), cossentino@pa.icar.cnr.it (M.

Cossentino), gaglio@unipa.it (S. Gaglio), sabatucci@dinfo.unipa.it (L. Sabatucci),
seidita@dinfo.unipa.it (V. Seidita).

The Journal of Systems and Software 83 (2010) 557–573

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.10.035
mailto:chella@unipa.it
mailto:cossentino@pa.icar.cnr.it
mailto:gaglio@unipa.it
mailto:sabatucci@dinfo.unipa.it
mailto:seidita@dinfo.unipa.it
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


et al., 2004; Chella et al., 1998). Autonomous agents offer powerful
instruments for decomposing, abstracting and organizing such
complex, distributed and evolving systems. Several works consider
robotic software as a collection of agents, where each of them is
responsible for a specific functional area of the robot. These agents
independently manage robot devices and collaborate in order to
exhibit a collective synchronized behaviour, thus achieving a col-
lective goal that is the robot mission.

This structure creates a decoupling between hardware and soft-
ware, that is a necessary feature of an engineering design in which
mission and global requirements, take priority over details about
the implementation and deployment platforms.

This paper presents design patterns for agents, defined as a
complement of the PASSI (process for agent societies specification
and implementation) design process (Cossentino, 2005]) for devel-
oping multi-agent systems (MAS).

The contribution of this paper is a pattern-based reuse method
supported by a specific tool for automatic code and documentation
production. Although other works exist in this field, the specific
innovations proposed by this approach are multifold. First of all,
they regard the integration between the pattern reuse practice
and the PASSI design process; then there is the successful adoption
in the development of complex systems like robotic ones. The gen-
eration of the system code from pattern reuse is another relevant
element; this code is not the common skeleton produced by sev-
eral design tools nor the behavioural code obtained by applying
transformations to dynamic diagrams (like it can be done for
state-charts) but it is a complete and fully functional portion of
code (skeletons and inner code of methods) reused from a reposi-
tory and adapted to the specific problem or produced by process-
ing available system specifications. Finally another contribution
is in the definition of a repository of patterns that can be widely ap-
plied to the design of robotics systems but also in many other
developing scenarios.

The paper is organized as follows: Section 2 presents common
approaches for building robotic systems underlining the growing
need for frameworks and methods for a rapid prototyping of these
applications. Section 3 describes a well-known architecture
adopted for a robotic case study throughout the paper. Section 4
illustrates the proposed engineering process consisting in a reuse
technique based on design pattern composition. In addition, a tool
(Agent Factory) is presented for supporting pattern selection, reuse
and composition; it also provides automatic code and documenta-
tion generation. Section 5 presents some patterns from a repository
for agents. They have been identified as a solution to typical and
recurring robotic design problems. The section illustrates both pat-
tern features and their usage. Section 6 is focused on the reuse and
composition process applied to the proposed robotic application.
Section 7 discusses the reusability of this approach and the quality
of the produced system. Finally, some conclusions are drawn in
Section 8.

2. Robot programming techniques and methodologies

This section explores possible approaches from literature to the
development of robotic applications. The analysis starts with spe-
cific architectures and frameworks for reusing robotic components.
Successively some methodologies for designing multi-agent ro-
botic systems are illustrated and finally design pattern reuse is
discussed.

2.1. Component-based frameworks

In the last few years several different platforms have been pro-
posed for robotics programming. These are mainly based on the

principle of modularity and make an extensive use of compo-
nent-based software engineering practices. Several frameworks
exist where a set of components specialized for robotic applica-
tions can be customized and integrated, thus the process of build-
ing a robotic system is made easier.

The CLARAty framework (Volpe et al., 2001) proposes a repre-
sentation of the system based on two layers: the Decision Layer is
the strategic level that drives the Functional Layer. The upper level
provides components for the reasoning engine while the lower level
is layered and can represent different levels of system abstractions.

The COOLBOT framework (Dominguez-Brito et al., 2004) explic-
itly considers software reuse, modular composition and third-party
software integration. This framework provides means to design
and to build units to be reused and to be composed (hierarchically
and dynamically) by using finite state machine diagrams.

The Chimera methodology (Stewart and Khosla, 1996) ad-
dresses the design of dynamically reconfigurable real-time systems
and robotic applications. Components are specified by describing
their interfaces. The result is a software model for objects that
can be reused, statically integrated and dynamically reconfigured,
it supports real-time applications, and it can be used in a distrib-
uted shared memory environment.

2.2. Multi-agent system methodologies

Multi-agent systems represent a means for introducing auton-
omy, distribution, collaboration, and other advanced features in ro-
botic (and non-robotic) programming. Many design methodologies
have been proposed for designing agent systems and most of them
can be adopted for the design of robotic applications. Stolzenburg
and Arai (2003) propose to specify agent behaviour for robotic
applications by using UML state-charts. Model checking tech-
niques are employed to formally analyze behavioural properties
of finite state systems and other issues like concurrency.

The organizational-based multiagent systems engineering
(MaSE) methodology (DeLoach, 2005) has been conceived for engi-
neering practical multiagent systems. It prescribes a top-down ap-
proach where the key concept is the Goal, a system-level objective
that can be assigned to agents. MaSE has been used to design a
team of autonomous, heterogeneous search and rescue robots.
Analysis and design models proved to be helpful in the mainte-
nance and modification of the cooperative robotic systems. A tool
(agentTool) is provided with the methodology that supports the
designer during system development.

The Cassiopeia methodology provides a method to proceed
from a collective task global specification to the specification of
the local behaviours, which are to be provided to the agents. The
methodology has been successfully adopted in order to design
and implement the organization of a robot team for the RoboCup.

A totally opposed approach is defined in ADELFE (Bernon et al.,
2005) that assumes agents totally ignore system goals and the
environment where they live. It employs cooperative agents whose
design is aimed at avoiding non-cooperative situations descending
from incomprehension, ambiguity, incompetence, unproductive-
ness, concurrency or other conflicts. ADELFE was employed to
implement a multi-robot resource transportation system (Picard,
2005).

2.3. Reuse with design patterns

It is commonly recognized that reuse cannot be limited to the
development phase (Barnes and Bollinger, 1991; Griss, 1993; Hoo-
per and Chester, 1991. Design patterns are commonly considered
the ultimate way for introducing reuse in a design process (Lajoie
and Keller, 1995). They also allow for overcoming main limitations
of components reuse: (i) libraries of components usually address

558 A. Chella et al. / The Journal of Systems and Software 83 (2010) 557–573



Download	English	Version:

https://daneshyari.com/en/article/461969

Download	Persian	Version:

https://daneshyari.com/article/461969

Daneshyari.com

https://daneshyari.com/en/article/461969
https://daneshyari.com/article/461969
https://daneshyari.com/

