
An empirical examination of application frameworks success based
on technology acceptance model

Gregor Polančič *, Marjan Heričko, Ivan Rozman
University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor, Slovenia

a r t i c l e i n f o

Article history:
Received 16 September 2008
Received in revised form 17 August 2009
Accepted 24 October 2009
Available online 29 October 2009

Keywords:
Application frameworks
Technology acceptance model
Post adoption behavior
Information system success
Survey
Structural equation models

a b s t r a c t

Framework-based development is currently regarded as one of the most promising software develop-
ment approaches when it comes to improvements in lead time, productivity and quality. However, many
frameworks and projects based on frameworks still report failures, which indicate that there are prob-
lems related to both frameworks technology and frameworks usage. The objective of our research was
to examine the major drivers that have an impact on a framework’s acceptance and a framework’s suc-
cess. We used the technology acceptance model (TAM) and Seddon’s information systems success model
as our underlying theory. Data collected from an online survey of 389 active framework users was used to
test hypothesized models. Data analysis was performed via structural equation modeling. Our findings
support the post-adoption version of TAM and the relationship between continuous use and the success-
ful use of systems, where more use also means more net benefits. We found that the successful use of
frameworks is mainly dependent on two factors: continuous framework usage intention and the per-
ceived usefulness of the framework. Several practical and theoretical implications can be foreseen includ-
ing advances in framework development guidelines and insight into the relationship between the
acceptance and success of frameworks.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Application frameworks (or ‘‘frameworks” for short) are a
mature technology for reusing software designs and implementa-
tions in order to reduce costs and improve the quality of developed
software (Mamrak and Sinha, 1999; Morisio et al., 2002b). Frame-
works are semi-completed systems that contain certain fixed as-
pects common to all applications in the problem domain, and
certain variable aspects unique to each application made from it
(also known as ‘‘framework instances”) (Srinivasan, 1999). Ob-
ject-oriented frameworks are the most prevalent. They are defined
as ‘‘a set of classes that embodies an abstract design for a solution
to a family of related problems” (Johnson and Foote, 1988).

Frameworks differ from other reuse techniques, such as compo-
nents, libraries or design patterns, because they aim to reuse larger
grained components and higher-level designs (Fig. 1). Because they
define the flow of control, they act as the main program for instan-
tiated applications.

Frameworks play a central role in the software development
community (Manolescu et al., 2006), especially when it comes to
instantiating software within product lines and product families
(Batory et al., 2000; Cunningham et al., 2006). Frameworks also

act as an extension of generic programming languages and allow
developers to make gains from commonalities in the domain they
act (using domain frameworks), development practices they
implement (using support frameworks) or applications they devel-
op (using application frameworks).

Besides the positive effects, developing, instantiating and
maintaining frameworks continues to be a difficult endeavor
(Bosch et al., 1999; Srinivasan, 1999; van Gurp and Bosch, 2001).
Due to this, software developers may not decide to develop or
use frameworks despite their availability. Or they might develop
or use frameworks in an inappropriate way, which leads to project
failures.

Because there are problems that make framework development
and instantiation difficult, practitioners and researchers have
proposed several improvements to them, ranging from documen-
tation improvements (Johnson, 1992), technical improvements
(van Gurp and Bosch, 2001) and general improvements for
successful framework development and instantiation (Landin and
Niklasson, 1995).

While these improvements do stimulate new ideas, most of
them are based on personal experiences. Additionally, they do
not include proven theoretical foundations and empirical research,
which is regarded as one of the main problems of software engi-
neering (Shaw, 1990). Measurement and experimentation for
product line engineering has been identified by Frakes and Kang

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.10.036

* Corresponding author. Tel.: +386 2 220 7421.
E-mail address: gregor.polancic@uni-mb.si (G. Polančič).

The Journal of Systems and Software 83 (2010) 574–584

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.10.036
mailto:gregor.polancic@uni-mb.si
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


(2005) as an area where considerably more work is necessary. Sec-
ondly, most of the framework improvements are only technologi-
cally oriented. However, while frameworks are intensively used
by application developers, it is reasonable to incorporate frame-
work developers and users into research on the subject. This sup-
position is consistent with the results of the Morisio et al.
(2002a) study, in which the authors found that human factors have
played a focal role in the success of software reuse. Finally, given
the importance of frameworks and the extent of their impact on
software development projects, there is still a lack of research that
identifies and addresses fundamental issues, such as how different
framework-related improvements influence frameworks and the
perceptions of application developers who instantiate frameworks.
However, without a clear understanding of the dynamics of a
framework’s success, those improvements can only be speculative.

Compared with existing framework research, our research does
not propose concrete improvements to frameworks but investi-
gates the major drivers that have an impact on a framework’s
acceptance and its successful use. We investigate framework
acceptance as a special case of IT acceptance where a solid theory
with reliable measurement scales has been developed and empir-
ically validated over the past 15–20 years. This theory is commonly
expressed in the ‘‘technology acceptance model” or TAM. Our re-
search builds on TAM and adapts it to the context of frameworks.
The reason for adapting TAM specifically to frameworks instead
to all reusable assets is that researchers in previous studies re-
ported problems with ‘‘not distinguishing among different types
of reusable assets” (Mellarkod et al., 2007).

The original outcome of this article is an empirically validated
causal model of factors that impact a framework’s acceptance
and its successful use. Based on the model, several theoretical
and practical implications can be foreseen and are presented in
the conclusion of this paper.

2. Theoretical background

2.1. Application frameworks

As presented in the introduction, a framework is a partial design
and implementation for an application in a given problem domain.
Frameworks are expressed in a programming language, so they
commonly consist of a set of cooperating classes and libraries that
make up a reusable design. Certain methods of these classes are
left unspecified or abstract. In this way they expose details that
vary among framework’s implementations. A framework instance
provides the missing details. It is a pairing of a concrete subclass
with each abstract class of the framework to provide a complete
implementation. These areas of variability within a framework

are called hot spots. A hot spot can contain several hooks, which
represent actual places (methods) in the framework that can be
adapted or extended in order to provide application specific func-
tionality (Fig. 2).

In contrast, framework’s frozen spots capture the commonali-
ties across framework instances. These remain unchanged in any
instantiation of the framework. In frozen spots, responsibility, col-
laboration and thread of control are defined. These are commonly
expressed with design patterns (Froehlich et al., 1998).

Despite the problem domain knowledge and large-scale-reuse
offered by framework-based development, application develop-
ment based on frameworks continues to be difficult. The frame-
work user must first understand the complex class hierarchies
and object collaborations embodied in the framework to use the
framework effectively. Besides, frameworks are particularly hard
to document since they represent a reusable design at a high-level
of abstraction implemented by the framework classes.

To improve the interaction between frameworks and their
users, numerous framework development guidelines have been
proposed (Mattsson, 2000). For example, a cataloque of 71 frame-
work-related guidelines has been defined by Landin and Niklasson
(1995). These guidelines impact design, implementation and use of
frameworks. However, the questions remain how these guidelines
impact frameworks, their users’ perceptions and project outcomes.

2.2. Information technology acceptance

Understanding what influences users to use specific technology,
is a major issue in the IT success area (Sharp, 2007). Within the
theories which examine the acceptance and use of IT, Davis’s
(1989) Technology Acceptance Model (TAM), remains one of the
most cited, validated and often used theoretical models (King
and He, 2006). As demonstrated with solid arrows in Fig. 3, a key
assumption of TAM is that external variables (EV) influence the
decision to use particular IT only indirectly through their impact
on users’ beliefs: i.e. the perceived ease of use (PEOU) and per-
ceived usefulness (PU). These two beliefs both influence users’ atti-
tude towards using IT (ATU). ATU sequentially has influence on
which behavioral intention to use (BI), which is the key factor in
determining IT use (U). And, as Tonella et al. (2007) stated, TAM
factors must be fulfilled to efficiently exploit new tools.

The solid arrows in Fig. 3 show the initial TAM relationships as
introduced by Davis. The dotted arrows show the relationships
investigated by other researchers, whereas the values on the ar-
rows show the results of TAM meta-analysis, which was performed
by Legris et al. (2003). The values on arrows indicate following: (1)
number of significant positive relations identified, (2) number of
non-significant relations identified, (3) number of significant neg-
ative relations identified and (4) number of untested relations.

Framework

Core

HotSpot

ClassLibrary

FrozenSpotHook

Fig. 2. Framework structure, presented in UML class diagram.

Class / class 
library

Design pattern

Framework

Application

Fig. 1. Framework elements and their relationships (Sangdon et al., 1999).

G. Polančič et al. / The Journal of Systems and Software 83 (2010) 574–584 575



Download English Version:

https://daneshyari.com/en/article/461970

Download Persian Version:

https://daneshyari.com/article/461970

Daneshyari.com

https://daneshyari.com/en/article/461970
https://daneshyari.com/article/461970
https://daneshyari.com

