
Identification of refactoring opportunities introducing polymorphism

Nikolaos Tsantalis, Alexander Chatzigeorgiou *

Department of Applied Informatics, University of Macedonia, 54006 Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Received 14 November 2008
Received in revised form 3 September 2009
Accepted 3 September 2009
Available online 11 September 2009

Keywords:
Refactoring
Polymorphism
State/Strategy design pattern
Object-oriented design

a b s t r a c t

Polymorphism is one of the most important features offered by object-oriented programming languages,
since it allows to extend/modify the behavior of a class without altering its source code, in accordance to
the Open/Closed Principle. However, there is a lack of methods and tools for the identification of places in
the code of an existing system that could benefit from the employment of polymorphism. In this paper
we propose a technique that extracts refactoring suggestions introducing polymorphism. The approach
ensures the behavior preservation of the code and the applicability of the refactoring suggestions based
on the examination of a set of preconditions.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Polymorphism has been widely recognized as one of the most
important features of object-oriented programming languages. As
polymorphism we refer to subtype polymorphism which according
to Day et al. (1995) allows code written in terms of some type T to
actually work for all subtypes of T. The main advantage of polymor-
phism is that it allows client classes to depend on abstractions
(Gamma et al., 1995; Martin, 2003). An abstraction (abstract class
or interface) can be extended by adding new subclasses that con-
form to its interface (i.e. override its abstract methods). However,
the client classes that depend on abstractions do not have to
change in order to take advantage of the behavior defined in the
new subclasses.

Despite the sedulous teaching of polymorphism in object-ori-
ented programming courses and its detailed presentation and
discussion in books appealing to professionals, state-checking is of-
ten employed as an alternative approach to polymorphism in order
to simulate late binding and dynamic dispatch. State-checking man-
ifests itself as conditional statements that select an execution path
either by comparing the value of a variable representing the
current state of an object with a set of named constants, or by
retrieving the actual subclass type of a reference through RunTime
Type Identification (RTTI) mechanisms. The aforementioned symp-
toms usually result from either poor quality of the initial design
or software aging (Parnas, 1994) caused by requirement changes
that were not anticipated in the original design. State-checking

introduces additional complexity due to conditional statements
consisting of many cases and code duplication due to conditional
statements scattered in many different places of the system that
perform state-checking on the same cases for different purposes
(Fowler et al., 1999). As a result, the maintenance of multiple
state-checking code fragments operating on common states may
require significant effort and introduce errors.

Although the employment of polymorphism in object-oriented
systems is considered as an important design quality indicator,
there is a lack of tools that either identify state-checking cases in
an existing system or eliminate them by applying the appropriate
refactorings on source code. To this end, we propose a technique
for the identification and elimination of state-checking problems
in Java projects that has been implemented as an Eclipse plug-in.
An advantage of the proposed approach over metric-based ap-
proaches is the fact that all identified problems are actual cases
of state-checking rather than ordinary conditional statements.
Moreover, the examination of a set of preconditions ensures that
the refactoring suggestions are both applicable and behavior-
preserving.

The approach can be considered as semi-automatic, since after
the extraction of the refactoring suggestions the designer is
responsible for deciding whether a state-checking case should be
eliminated or not based on conceptual and design quality criteria.
Regarding the automation of the identification process, the main
difference of the proposed technique with state-of-the-art Inte-
grated Development Environments (IDEs) offering refactoring sup-
port (e.g. Eclipse 3.5, Netbeans 6.7, IntelliJ IDEA 8.1, Visual Studio
2008 along with Refactor! Pro 2.5) is that IDEs determine which
refactorings are applicable based on the selection of a code frag-
ment by the developer, while the proposed technique identifies

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.09.017

* Corresponding author. Tel.: +30 2310 891886; fax: +30 2310 891791.
E-mail addresses: nikos@java.uom.gr (N. Tsantalis), achat@uom.gr

(A. Chatzigeorgiou).

The Journal of Systems and Software 83 (2010) 391–404

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.09.017
mailto:nikos@java.uom.gr
mailto:achat@uom.gr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


refactoring opportunities without requiring any human interven-
tion. Moreover, the proposed technique assists the designer to
determine the effectiveness of the identified refactoring opportuni-
ties by grouping them according to their relevance and sorting
them according to various quantitative characteristics.

The evaluation of the proposed technique consists of three
parts. The first part presents the precision and recall of the ap-
proach by comparing the refactoring opportunities identified by
an independent expert to the results of the proposed technique
on various open-source projects. The second part of the evaluation
investigates the impact of three quantitative factors on the deci-
sion of the independent expert to accept or reject the refactoring
opportunities identified by the proposed technique. The last part
refers to the scalability of the technique based on the computation
time required for the extraction of refactoring suggestions on var-
ious open-source projects which differ in size characteristics.

The rest of the paper is organized as follows: Section 2 provides
an overview of the related work. The proposed technique is thor-
oughly analyzed in Section 3, and Section 4 presents the tool that
implements it. The results of the evaluation are discussed in Sec-
tion 5. Finally, we conclude in section 6.

2. Related work

According to Gamma et al. (1995), polymorphism simplifies the
definitions of clients, decouples objects from each other, and lets
them vary their relationships to each other at runtime. To this
end, polymorphism plays a key role to the structure and behavior
of most design patterns. In the literature of object-oriented soft-
ware engineering, several empirical studies have investigated the
impact of polymorphism and design patterns on external quality
indicators related with software maintenance.

Brito e Abreu and Melo (1996) have shown that Polymorphism
Factor (Brito e Abreu, 1995), which is defined as the number of
methods that override inherited methods divided by the maximum
number of possible distinct polymorphic situations, has a moder-
ate to high negative correlation with defect and failure densities
as well as with rework. In other words, the appropriate use of poly-
morphism in an object-oriented design should decrease the defect
density and rework. However, they have also supported that very
high values of Polymorphism Factor (above 10%) are expected to
reduce these benefits, since the understanding and debugging of
a highly polymorphical hierarchy is much harder than the proce-
dural counterpart.

Prechelt et al. (2001) conducted a controlled experiment to
compare design pattern solutions to simpler alternatives in terms
of maintenance. The subjects of the experiment were professional
software engineers that were asked to perform a variety of mainte-
nance tasks. The independent variables were the programs and
change tasks, the program version (there were two different func-
tional equivalent versions of each program, a pattern-based ver-
sion and an alternative version with simpler solutions) and the
amount of pattern knowledge of the participants. The dependent
variables were the time taken for each maintenance task and the
correctness (i.e. whether the solutions fulfilled the requirements
of the task). In most of the cases the experimental results had
shown positive effects from the use of design patterns, since main-
tenance time was reduced compared to the simpler alternative
versions.

Ng et al. (2006) performed a controlled experiment on main-
taining JHotDraw to study whether the introduction of additional
patterns through program refactoring is beneficial regardless of
the work experience of the maintainers. For this reason, they used
two sets of subjects in their experiment, namely experienced and
inexperienced maintainers. They compared two maintenance ap-

proaches where in the first approach the subjects performed the
maintenance tasks directly on the original program, while in the
second approach the subjects performed the maintenance tasks
on a refactored version of the original program using additional de-
sign patterns to facilitate the required changes. The empirical re-
sults have shown that, to complete a maintenance task of
perfective nature, the time spent even by the inexperienced main-
tainers on the refactored version was much shorter than that of the
experienced subjects on the original version.

Ng et al. (2007) studied whether maintainers utilize deployed de-
sign patterns, and when they do, which tasks they more commonly
perform. For this reason, they refined an anticipated change facili-
tated by the deployment of design patterns into three finer-grained
maintenance tasks, namely adding new concrete participants, mod-
ifying the existing interfaces of a participant, and introducing a new
client. They concluded that regardless of the type of tasks performed
by maintainers when utilizing deployed design patterns for antici-
pated changes, the delivered code is significantly less faulty than
the code developed without utilizing patterns.

Other empirical studies have shown that maintenance effort
does not only depend on the design quality of a given program
(as expressed by the employment of design principles or the exis-
tence of design patterns), but also on human factors such as the
experience, skills and education of the software developers and
maintainers.

Arisholm and Sjøberg (2004) performed a controlled experi-
ment in order to investigate the effect of delegated versus central-
ized control style on the maintainability of object-oriented
software. To this end, two categories of developers (namely expe-
rienced and inexperienced) performed several change tasks on two
alternative designs that had a centralized and delegated control
style, respectively. The results of the experiment have shown that
the most experienced developers required less time to maintain
the software with delegated control style than with centralized
control style, while novice developers had serious problems in
understanding the delegated control style and performed much
better with the centralized control style. Consequently, they con-
cluded that maintainability of object-oriented software depends,
to a large extent, on the skill of the maintainers.

Du Bois (2006) performed a series of controlled experiments to
investigate whether the application of two reengineering patterns
(Demeyer et al., 2003), namely Refactor to Understand and Split Up
God Class, can improve program comprehension. The experiment
involving the decomposition of god classes verified that the partic-
ular education of the subject performing the comprehension task
affects the way in which a god class is decomposed.

Wendorff (2001) reported on a large commercial project where
the uncontrolled use of patterns has contributed to severe mainte-
nance problems. The reasons causing the maintenance problems
were that some pattern instances were misused by software devel-
opers who had not understood the rationale behind their employ-
ment, many software developers overestimated the future
volatility of requirements and opted for patterns to build flexibility
at the cost of an undesirable increase of complexity, the change of
requirements over the lifetime of the project led some pattern in-
stances to become obsolete, and finally some pattern instances
were embellished with additional features which were not actually
needed. Consequently, the inappropriate application of patterns
may have a negative effect on flexibility and maintainability of ob-
ject-oriented software.

Concerning performance, it is widely believed that the replace-
ment of conditional logic by a polymorphic method call deterio-
rates performance due to the introduction of an additional
indirection through the virtual function table. Demeyer (2005)
investigated the performance trade-off that is involved when intro-
ducing virtual functions by comparing the execution time of four

392 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404



Download	English	Version:

https://daneshyari.com/en/article/462016

Download	Persian	Version:

https://daneshyari.com/article/462016

Daneshyari.com

https://daneshyari.com/en/article/462016
https://daneshyari.com/article/462016
https://daneshyari.com/

