
A modern approach to multiagent development

D. Vallejo *, J. Albusac, J.A. Mateos, C. Glez-Morcillo, L. Jimenez
School of Computer Science, University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071 Ciudad Real, Spain

a r t i c l e i n f o

Article history:
Received 28 January 2009
Received in revised form 18 September
2009
Accepted 18 September 2009
Available online 27 September 2009

Keywords:
Agent technology
Multiagent architecture
Distributed artificial intelligence

a b s t r a c t

Multiagent systems (MAS) development frameworks aim at facilitating the development and administra-
tion of agent-based applications. Currently relevant tools, such as JADE, offer huge possibilities but they
are generally linked to a specific technology (commonly Java). This fact may limit some application
domains when deploying MAS, such as low efficiency or programming language restrictions. To contrib-
ute to the evolution of multiagent development tools and to overcome these constraints, we introduce a
multiagent platform based on the FIPA standards and built on top of a modern object-oriented middle-
ware. Experimental results prove the scalability and the short response-time of the proposal and justify
the design and development of modern tools to contribute the multiagent technology.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Agent-Oriented Programming (AOP) (Jennings, 2000) is defined
as a software development paradigm that combines Artificial Intel-
ligence and Distributed Systems. Basically, AOP conceives an appli-
cation as a set of software components named agents (Wooldridge
and Jennings, 1995), which are autonomous and proactive entities
that are able to communicate with one another. The architectural
model of agent-based systems is inherently distributed and is
based on a peer-to-peer scheme, where each agent cooperates
and communicates with others when it is needed.

Currently, multiagent systems (MAS) are being applied as a
solution to a wide range of problems (Weiss, 1999), such as plan-
ning, scheduling systems, real-time control, robotics, and more
industrial fields. This expansion in the use of MAS is also captured
in software engineering models (Jennings, 2000) based on the use
of autonomous agents to solve complex and distributed problems,
the definition of methodologies (Wooldridge and Ciancarini, 2001),
the use of languages (Bordini et al., 2006), or even the adoption of
standards (Foundation for Intelligent Physical Agents, 2002a). In
other words, AOP is used to deal with the design of problems in
which other approaches are insufficient or incomplete.

This evolution can also be appreciated in MAS software devel-
opment platforms (see Table 1). Thanks to these tools, agent-ori-
ented system developers can focus their work on the multiagent
application instead of dealing with administrative issues. For the
time being, JADE (Java Agent DEvelopment framework) (Bellife-

mine et al., 2008) is probably the most widespread agent-oriented
middleware. JADE can be defined as a modular and distributed
framework that facilitates the development of agent-based appli-
cations. This agent framework implements the agents’ life cycle
and the management logic by providing administrative tools to de-
ploy, monitor, and debug multiagent systems (Bellifemine et al.,
2007).

Developers commonly use some existing framework in order to
do the final deployment and not to spend too time in management
and communication issues. The main advantages of this choice are
an easy configuration and the administrative facilities derived from
the agent middleware. Nevertheless, the main drawback is that the
developer will be conditioned by the characteristics of the chosen
framework.

Most current agent-oriented middlewares (see Table 1 in Sec-
tion 2.2), although developed with the idea of providing general-
purpose tools applicable to a wide range of domains, have several
limitations that are directly related to their particular
developments:

� Most of them are linked to a technology that limits their expan-
sion to some platforms (due to hardware or resource consump-
tion constraints).

� Most of them use technologies based on Java, which decreases
the performance due to the Java Virtual Machine technology
(see the experimental results in Section 4.2).

Within this context, several application domains, such as the
systems that need short response-time, require solutions that
overcome the previous limitations. To address these issues, the
agent community needs to provide solutions that contribute to

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.09.036

* Corresponding author. Fax: +34 926 295 354.
E-mail address: David.Vallejo@uclm.es (D. Vallejo).
URL: http://personal.oreto.inf-cr.uclm.es/dvallejo (D. Vallejo).

The Journal of Systems and Software 83 (2010) 467–484

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.09.036
mailto:David.Vallejo@uclm.es
http://personal.oreto.inf-cr.uclm.es/dvallejo
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


the evolution of platforms for developing multiagent systems and
solve the limitations of existing frameworks. Therefore, one of
our goals is to use a modern object-oriented communication mid-
dleware (Henning, 2004) that allows us to extend the platform pro-
posed in this work to different programming languages, operating
systems, and hardware environments.

Another critical design topic to take into account in this evolu-
tion is the adoption of standards to promote the interoperability
between MAS. In this context, the FIPA (Foundation for Intelligent
Physical Agents) committee defines the most widespread proposal
within the multiagent field. In this way, another of the central
themes of our approach consists in adopting the set of FIPA speci-
fications for the development of MAS. In fact, the last goal is to
keep spreading the agent technology by providing an agent plat-
form that facilitates the agent management and answers the chal-
lenge posed in (Ricci and Nguyen, 2007) regarding the deployment
of MAS in real environments.

To face these challenges, this work introduces the design and
development of an agent platform that follows the FIPA specifica-
tions and facilitates the development of agent-oriented applica-
tions. The main goal of our approach is to provide an alternative
agent development framework that overcomes the previously dis-
cussed limitations. The design of this agent platform is heavily
based on the use of well-known software engineering issues, such
as design patterns and templates, and supported by ZeroC ICE
(Henning, 2004), a modern object-oriented communication mid-
dleware that provides tools, APIs, and libraries to build object-ori-
ented client–server distributed applications. ICE represents a
modern alternative to develop distributed systems, which is based
on CORBA’s principles but with a lower complexity and a higher
cohesion to make easy its use and learning (Henning, 2006).

The justification of using an object-oriented approach is due to
two main reasons: (i) agents are actually an evolution of objects
but with new characteristics such as autonomy and proactiveness
(Wooldridge, 2001), and (ii) FIPA semantics shows object-oriented
notions to describe concepts and ontologies (Foundation for Intel-
ligent Physical Agents, 2004). This choice facilitates both the
development of the agent platform itself and the development of
agent-based applications on behalf of external developers.

In order to validate the agent platform, we have run two series
of tests that measure its response-time and efficiency. The first one
is related to an environment with multiple computers in which the
agents send a variable number of messages with a determined size.
Within this context, we evaluate the total traffic, the time spent in
spamming messages, and the processing time spent in receiving
messages depending on the number of messages sent and the mes-
sage size. The second one refers to the deployment of agents by
means of the named agent factories. The goal of this set of tests
is evaluating the impact of hibernating and activating agents
implemented in different programming languages by considering
the agent creation time and the agent reactivation time. Finally,
we briefly describe two scenarios where the agent platform pro-
posed in this work has been used to successfully deploy multiagent
applications.

The rest of the paper is organised as follows. Section 2 positions
our work in the context of existing standards and multiagent plat-

forms. Section 3 describes and discusses in depth the design and
the development of the different components of the proposed plat-
form. Section 4 presents the experiments carried out to validate
the work and its application in two real problems. Finally, Section
5 concludes the paper and suggests future research lines.

2. Related work

In the last decade there has been an important number of soft-
ware developments in different MAS related fields, ranging from
declarative and imperative languages, integrated development
environments, to agent platforms and frameworks (see Bordini
et al., 2006 for a recent survey). Since this paper introduces a
framework for the development of FIPA related MAS, we position
our work in the context of existing standards and platforms.

2.1. MAS standards

2.1.1. Foundation for Intelligent Physical Agents (FIPA)
The Foundation for Intelligent Physical Agents (FIPA) is an IEEE

committee aimed at promoting agent-based technology and inter-
operability between agent-based applications. FIPA specifications
provide a set of standards for agents to interoperate at different
levels. One of the more relevant documents is the FIPA Abstract
Architecture Specification (Foundation for Intelligent Physical
Agents, 2002a). This document and its derived specifications define
the abstract architecture proposed by FIPA for the development of
MAS (see Fig. 1). The main advantage of adopting the set of FIPA
standards is the maturity obtained after more than 12 years of pro-
ducing specifications for heterogeneous and interacting agents and
agent-based systems.

The FIPA Agent Management Specification (Foundation for
Intelligent Physical Agents, 2004) establishes the agent manage-
ment model of the agent platform, including the basic FIPA man-
agement services, the management ontologies, and the message
transport model. The first relevant service is the Directory Facilita-
tor (DF), which is responsible for providing agents with a yellow-
pages service. Next, the Agent Management System acts as the
platform manager and maintains a directory with the valid agent
identifiers (AIDs) of the agents registered with the platform. Be-
sides providing the agents with a white pages service, the AMS also
manages the agent life cycle. Finally, the Message Transport Ser-
vice (MTS) provides support to send and receive Agent Communi-
cation Language (ACL) messages.

2.1.2. OMG’s agent PSIG
The mission of the Agent Platform Special Interest Group (OMG)

(PSIG) is to work with the OMG (Object Management Group) plat-
form in order to stimulate the creation of agent specifications di-
rectly related to OMG technology (Odell, 2000). The relevant
goals are to recommend OMG extensions to deal with agent tech-

Fig. 1. FIPA abstract architecture.

Table 1
Currently relevant agent-oriented software development platforms.

Name Language Standard Free Relevant paper

JADE Java FIPA Yes Bellifemine et al. (2008)
Jadex Java FIPA Yes Pokahr et al. (2005)
Cougaar Java No Yes Helsinger and Wright (2005)
Agent factory Java FIPA Yes Ross et al. (2004)
JACK Java No No Winikoff (2006)

468 D. Vallejo et al. / The Journal of Systems and Software 83 (2010) 467–484



Download English Version:

https://daneshyari.com/en/article/462022

Download Persian Version:

https://daneshyari.com/article/462022

Daneshyari.com

https://daneshyari.com/en/article/462022
https://daneshyari.com/article/462022
https://daneshyari.com

