The Journal of Systems and Software 85 (2012) 16-27

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

Srstoms and S

i
i

Test coverage optimization for large code problems

Ying-Dar Lin®*, Chi-Heng Chou?, Yuan-Cheng Lai®, Tse-Yau Huang¢, Simon Chung9,

Jui-Tsun Hung?, Frank C. Lin®

2 Department of Computer Science, National Chiao Tung University, Taiwan
b Department of Information Management, National Taiwan University of Science and Technology, Taiwan
¢ Department of Communications Engineering, National Chiao Tung University, Taiwan

d Cisco Systems Inc., USA
€ San Jose State University, USA

ARTICLE INFO

Article history:

Received 1 May 2010

Received in revised form 12 May 2011
Accepted 12 May 2011

Available online 20 May 2011

Keywords:

Regression testing
Test case selection
Test coverage

Test intensity
Software maintenance

1. Introduction

ABSTRACT

Software developers frequently conduct regression testing on a series of major, minor, or bug-fix software
or firmware releases. However, retesting all test cases for each release is time-consuming. For example,
it takes about 36 test-bed-days to thoroughly exercise a test suite made up of 2320 test cases for the
MPLS testing area that contains 57,758 functions in Cisco I0S. The cost is infeasible for a series of regres-
sion testing on the MPLS area. Thus, the test suite needs to be reduced intelligently, not just randomly,
and its fault detection capability must be kept as much as possible. The mode of safe regression test
selection approach is adopted for seeking a subset of modification-traversing test cases to substitute for
fault-revealing test cases. The algorithms, CW-NumMin, CW-CostMin, and CW-CostCov-B, apply the safe-
mode approach in selecting test cases for achieving full-modified function coverage. It is assumed that
modified functions are fault-prone, and the fault distribution of the testing area is Pareto-like. Moreover,
we also assume that once a subject program is getting more mature, its fault concentration will become
stronger. Only function coverage criterion is adopted because of the scalability of a software system with
large code. The metrics of test’s function reachability and function’s test intensity are defined in this study
for algorithms. Both CW-CovMax and CW-CostMin algorithms are not safe-mode, but the approaches
they use still attempt to obtain a test suite with a maximal amount of function coverage under certain
constraints, i.e. the effective-confidence level and time restriction. We conclude that the most effective
algorithm in this study can significantly reduce the cost (time) of regression testing on the MPLS testing
area to 1.10%, on the average. Approaches proposed here can be effectively and efficiently applied to the
regression testing on bug-fix releases of a software system with large code, especially to the releases
having very few modified functions with low test intensities.

© 2011 Elsevier Inc. All rights reserved.

However, many algorithms demand a long execution time, and a
huge number of test cases exist for a large body of code.

Over the lifetime of a large software product, the number of
test cases could drastically increase as new versions of software
are released. Because the cost of repeatedly retesting all test cases
may be too high, software testers tend to remove redundant or
trivial test cases to construct a reduced test suite for regression
testing at a reasonable cost. Generally, test cases are selected under
certain criteria such as coverage criteria, resources constraints, or
fault detection capability. In literature, researchers have developed
an array of selection algorithms for regression testing, based on a
variety of models of code coverage or fault detection capability.

* Corresponding author.
E-mail addresses: ydlin@cs.nctu.edu.tw (Y.-D. Lin), payton.chou@gmail.com
(C.-H. Chou), laiyc@cs.ntust.edu.tw (Y.-C. Lai), jason.hung.sb@gmail.com
(J.-T. Hung).

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2011.05.021

Bearing in mind factors of scalability and practicability,
code coverage information in this study is investigated at the
function-level granularity, rather than the statement-level one, e.g.
condition/decision or branches. In particular, test cases and func-
tions form an interlaced net; therefore, test case selection can
depend on function’s attributes, and vice versa. The interlaced net
correlation leads to two metrics — function’s test intensity and test’s
function reachability. The former indicates the percentage of test
cases covering a function, while the latter denotes the percentage
of functions reached by a test case.

Leung and White (1989) indicated that the test suite reduction
problem has two subproblems - test selection problem and test plan
update problem. Solutions to the former problem focus on how to
select test cases to construct a reduced test suite, which can still
effectively reveal faults. Yet solutions to the latter problem must
cope with the management of test plans for a software system that


dx.doi.org/10.1016/j.jss.2011.05.021
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:ydlin@cs.nctu.edu.tw
mailto:payton.chou@gmail.com
mailto:laiyc@cs.ntust.edu.tw
mailto:jason.hung.sb@gmail.com
dx.doi.org/10.1016/j.jss.2011.05.021

Y.-D. Lin et al. / The Journal of Systems and Software 85 (2012) 16-27 17

had experienced several releases of modifications. Cisco did not
provide test plan updates information; hence, only test selection
problems can be dealt with when the automated regression test
system is applied.

Recently Yoo and Harman (2010) showed a survey of regres-
sion testing on three problems - test suite minimization, regression
test-case selection (RTS), and test case prioritization. All share a com-
mon thread of optimization when a test suite reduction is exercised
from an existing pool of test cases. In this survey, regression test-
ing is described as “Regression testing is performed when changes
are made to existing software; the purpose of regression testing is to
provide confidence that the newly introduced changes do not obstruct
the behaviors of the existing, unchanged part of the software.” These
problems are restated as follows.

1.1. Test suite minimization problem

Given: A test suite of test cases where a set of testing require-
ments must be satisfied to provide the desired test coverage of the
program, and subsets of the test suite where each subset is associ-
ated with one of the testing requirements such that any test case in
the subset satisfies the testing requirement.

Problem: Find a minimal representative subset of the test suite
that satisfies all the testing requirements.

Test suite minimization problem is well known as the mini-
mal hitting-set problem, or the minimal set-cover problem (Garey
and Johnson, 1979). Approaches to this problem typically empha-
size on how to identify redundant test cases to be removed, so
that a minimal test suite can be constructed. Because this prob-
lem is NP-complete, heuristics methods (Wong et al., 1998; Leung
and White, 1989) are encouraged. In literature, the greedy meth-
ods, (Harrold et al., 1993; Jeffrey and Gupta, 2005, 2007; Chen
and Lau, 1998a), genetic methods (Whitten, 1998; Ma et al., 2005;
Mansour and El-Fakih, 1999), and linear programming methods
(Black et al., 2004) are commonly applied. In addition, the hitting
set algorithm (Harrold et al., 1993) categorizes test cases accord-
ing to the degree of “essentialness,” and selects test cases in order
from the most “essential” to the least “essential.” The heuristic
G/GE/GRE algorithms (Chen and Lau, 1998a) are developed depend-
ing on the essential, the 1-to-1 redundant, and the greedy strategies
(G: greedy strategy, E: essential strategy, and R: 1-to-1 redundant
strategy).

Other approaches include modeling the cost-benefits for regres-
sion testing (Malishevsky et al., 2002), measuring the impact of
test case reduction on fault detection capability (Wong et al., 1998,
1999; Rothermel et al., 1998, 2002), and analyzing fault detection
capability, especially with the branch coverage technique (Harrold
et al.,, 1993; Jeffrey and Gupta, 2005, 2007). The performance of
several test suite reduction techniques are examined by experi-
ments or simulations (Zhong et al., 2006; Chen and Lau, 1998b).
Because the algorithms in (Chen and Lau, 1998a,b) do not exactly
meet our requirements, G algorithms is revised and applied to test
case selection, as shown in section 3.

1.2. Test case selection problem

Given: A subject program with a corresponding test suite, and a
modified version of this subject program.

Problem: Find a reduced test suite for the modified version of
the subject program.

In literature (Yoo and Harman, 2010), approaches to test case
selection problems (Rothermel and Harrold, 1996) and to test suite
minimization problems are different in how they use changes, or
modified code, while selecting test cases. Approaches to test suite
minimization problems are based on a single release of a sub-
ject program while those to regression test case selection problem

are based on changes between a previous and the current version
of a subject program. Hence, the approaches to test case selec-
tion problems are modification-aware (Yoo and Harman, 2010) for
emphasizing the coverage of code changes. Moreover, Rothermel
and Harrold introduced the concept of modification-revealing test
case in (Rothermel and Harrold, 1994a) and assumed that identi-
fying fault-revealing test cases for new release program is possible
through the modification-revealing test cases between the origi-
nal and new release of a subject program. Rothermel also adopted
a weaker criterion that selects all the modification-traversing test
cases. A test case is modification-traversing if and only if it executes
new or modified code in the new release of a program, or it executes
former code yet deleted in the new release. This led to a premise
that selecting a subset of modification-traversing test cases and
remove test cases that are guaranteed not to reveal faults in the new
release of a program is possible. Thus, an approach to safe regression
test selection problem was introduced in Rothermel and Harrold
(1997), though it is still not safe for detecting all possible faults, but
providing a safe sense of always selecting modification-traversing
test cases into a reduced test suite. In Section 3, an algorithm that
selects test cases for a test suite with full-modified function cover-
age is of safe-mode and considered a safe regression test selection.
For instance, CW-NumMin, CW-CostMin, and CW-CostCov-B algo-
rithms are of safe mode while CW-CovMax and CW-CostMin-C
algorithms are not because these two algorithms do not intend to
achieve full modified function coverage.

Other approaches to test case selection problems employ dis-
tinct techniques such as data flow analysis (Harrold and Soffa,
1989), the graph-walk approach (Rothermel and Harrold, 1993,
1997, 1994b), the modification-based technique (Chen et al., 1994),
the firewall approach (Leung and White, 1990; White and Leung,
1992; Zheng et al., 2007) and so on. Strengths and weaknesses of
these approaches can be found in (Yoo and Harman, 2010).

1.3. Test case prioritization problem

Given: A test suite and a set of permutations of the test suite.

Problem: Find a test suite where test cases are exercised in
order, and a specified maximal gain is achieved under certain con-
straints.

The approach to this problem was first proposed by Wong et al.
(1998), and extended by Harrold (1999). Empirical Studies can be
found in Rothermel et al. (1999, 2001). The CW-CovMax and CW-
CostMin-C algorithms in Section 3 are the variants of approaches
to test case prioritization problems, except that these algorithms
merely emphasize on selecting test cases, instead of exercising test
cases in order.

In this work, six algorithms are implemented by a database-
driven method to reduce the size of test suites, and experiments
are conducted by an automated production system for regression
testing on the MPLS test area of Cisco IOS. The automated system
provides information on code coverage traces and execution time
for each test case, while a source control system imports a history
of code modification for analyzing faults detected from the newly
modified code.

Faults detected in regression testing are real, compared to the
faults that are hand-seeded in small subject programs when exam-
ining the test suite minimization problem. They are probably fixed
if detected in a series of releases of a subject program during regres-
sion testing. Thus, unless retesting all test cases, we cannot acquire
the total number of faults that can be detected. Even nobody can
know the total number of real faults that exist in a subject program.
Therefore, it is infeasible to calculate the fault detection effective-
ness for regression testing on an industrial software system.

PDF-SA algorithm applies the function’s test intensity as a metric
in reducing the function space by removing infrastructure func-



Download English Version:

https://daneshyari.com/en/article/462030

Download Persian Version:

https://daneshyari.com/article/462030

Daneshyari.com


https://daneshyari.com/en/article/462030
https://daneshyari.com/article/462030
https://daneshyari.com

