
The Journal of Systems and Software 85 (2012) 43–60

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Automatic testing environment for multi-core embedded software—ATEMES

Chorng-Shiuh Koonga,∗, Chihhsiong Shihb, Pao-Ann Hsiungc, Hung-Jui Laia, Chih-Hung Changd,
William C. Chub, Nien-Lin Hsuehe, Chao-Tung Yangb

a Dept. of Computer and Information Science, National Taichung University, Taichung, Taiwan
b Dept. of Computer Science and Information Engineering, Tunghai University, Taichung, Taiwan
c Dept. of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
d Dept. of Information Management, Hsiuping Institute of Technology, Taichung, Taiwan
e Dept. of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan

a r t i c l e i n f o

Article history:
Received 2 April 2010
Received in revised form 7 July 2011
Accepted 29 August 2011
Available online 10 September 2011

Keywords:
Automatic testing
Embedded software testing
Coverage testing
Unit testing
Cross-testing
Testing tool
Test case generation
Object testing
Multi-core embedded software testing
Parallelism degree testing
TBB testing

a b s t r a c t

Software testing during the development process of embedded software is not only complex, but also the
heart of quality control. Multi-core embedded software testing faces even more challenges. Major issues
include: (1) how demanding efforts and repetitive tedious actions can be reduced; (2) how resource
restraints of embedded system platform such as temporal and memory capacity can be tackled; (3) how
embedded software parallelism degree can be controlled to empower multi-core CPU computing capac-
ity; (4) how analysis is exercised to ensure sufficient coverage test of embedded software; (5) how to do
data synchronization to address issues such as race conditions in the interrupt driven multi-core embed-
ded system; (6) high level reliability testing to ensure customer satisfaction. To address these issues, this
study develops an automatic testing environment for multi-core embedded software (ATEMES). Based
on the automatic mechanism, the system can parse source code, instrument source code, generate test-
ing programs for test case and test driver, support generating primitive, structure and object types of
test input data, multi-round cross-testing, and visualize testing results. To both reduce test engineer’s
burden and enhance his efficiency when embedded software testing is in process, this system developed
automatic testing functions including unit testing, coverage testing, multi-core performance monitoring.
Moreover, ATEMES can perform automatic multi-round cross-testing benchmark testing on multi-core
embedded platform for parallel programs adopting Intel TBB library to recommend optimized parallel
parameters such as pipeline tokens. Using ATEMES on the ARM11 multi-core platform to conduct test-
ing experiments, the results show that our constructed testing environment is effective, and can reduce
burdens of test engineer, and can enhance efficiency of testing task.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

As computer software technology evolves to more sophistica-
tion, large scale of embedded software application and growing
customized demands highlight the importance of embedded soft-
ware quality control (Yin and Liu, 2009). Among the most discussed
issues of software engineering, extensive attention is on improv-
ing software quality (Tasse, 2002). Software testing is one of the
leading approaches (Hailpern and Santhanam, 2002) to ensure
software quality since it enhances software quality and reliabil-
ity (Kaner et al., 1999; Bertolino, 2007). However, software testing
consumes massive manpower and efforts. Automatic or semi-
automatic approaches are regarded as useful tools to economize
testing time span and efforts.

∗ Corresponding author. Fax: +886 4 22183580.
E-mail addresses: csko@mail.ntcu.edu.tw, shihc@go.thu.edu.tw (C.-S. Koong).

Traditional unit testing tools mainly focus on workstation
platform. Test case and test input data are generated from manual
or automatic input. Current method for automatic test case gen-
eration still needs to be improved (Michael et al., 2002). Most unit
testing tools are only capable of either automatically generating
test case program framework, or merely supporting primitive type.
Test engineer is obliged to manually write testing program seg-
ment and input test data under the generated program framework,
or to generate test case manually (Sen et al., 2005). Meanwhile,
enormous unwanted workloads are accompanied by repetitive
actions during testing. Further, testing conducted by manually
input test data is neither efficient nor capable of increasing test
coverage (King, 1976).

Generally, embedded system confronted with more hardware
and software resource constraints than desktop computer does
(Broekman and Notenboom, 2002). Test engineer has to exhaust
more efforts to test embedded software before improving quality
of embedded software (Myers, 2004). For this reason, embedded

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.08.030

dx.doi.org/10.1016/j.jss.2011.08.030
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:csko@mail.ntcu.edu.tw
mailto:shihc@go.thu.edu.tw
dx.doi.org/10.1016/j.jss.2011.08.030


44 C.-S. Koong et al. / The Journal of Systems and Software 85 (2012) 43–60

software testing differs from conventional testing in that target
program can first execute complicated operations on PC side for
the required resource necessary to testing, and then execute test-
ing on embedded hardware. This allows software to reduce testing
efforts on embedded platform (Delamaro et al., 2006).

The use of multi-core embedded system has been prevalently
considered to be better options than other alternatives. This also
makes multi-thread program indispensable in improving perfor-
mance (Hung et al., 2008). However, synchronizing defect such as
race condition is an inevitable issue in parallel program. The fac-
tor of data synchronization, thus, demands special attention when
executing parallel program. This factor coupled with the resource
constraints problem faced with testing an embedded system as
mentioned before makes the testing of multi-core embedded sys-
tem especially challenging.

Parallel programs running on multi-core embedded systems
usually adopt express coding library such as Intel TBB library (TBB)
for scalability and performance. Intel TBB pipeline allows user to
decide the extent of parallelism. Parameters such as pipeline token
numbers and pipeline stage numbers can be modified as required.
Experiences are essential in deciding the better pipeline token
numbers and pipeline stage numbers. Parallelism degree can be
limited if the token numbers selected are too small. On the con-
trary, resources can be consumed unnecessarily. For example, more
buffer spaces may be needed if token numbers selected are too big.
Traditionally, numerous manual modifications are required from
programmer before better pipeline token number parameter can
be found. To address the issue, this study enhances performance
testing by expanding functionalities of automatic multi-round test-
ing. To find better pipeline token number for target program, raw
data returned from target-side is calculated automatically and ana-
lyzed during runtime. This technology not only frees programmer
from consuming extra energy to find parallel pipeline parameter,
but also elevates parallel program performance in more precision.

Summing up from the discussion, issues waiting for current
multi-core embedded software testing to address include: (1) how
demanding efforts and repetitive tedious actions can be reduced;
(2) how resource restraints of embedded system platform such as
temporal and memory capacity can be tackled; (3) how embed-
ded software parallelism degree can be controlled to empower
multi-core CPU computing capacity; (4) how analysis is exercised
to ensure sufficient coverage test of embedded software; (5) how to
do data synchronization to address issues such as race conditions
in the interrupt driven multi-core embedded system; (6) high level
reliability testing to ensure customer satisfaction.

This study developed an automatic testing tool to support cross-
testing to both reduce target program overhead from performing
testing functionality on embedded platform and decrease efforts
for test engineer. The ATEMES can not only automatically generate
test data with primitive type, structure type, object type and array
type but also generate CppUnit-based test case and test driver. This
addresses the first issue.

Moreover, ATEMES can execute automatic multi-round per-
formance testing over multi-core embedded software adopting
Intel TBB library. The system can support locating recommended
value for better parallel parameter token number, which not only
allows embedded software parallelism but also facilitates comput-
ing capacity of multi-core CPU to operate more efficiently. This
feature addresses the issues of (2) and (3).

With the automatic multi-round mechanism, unit testing
and coverage testing (Lyu et al., 1994) can be implemented
to save test engineer from massive repetitive tasks. With the
cross-testing technology between host-side (workstation) and
target-side (embedded system), factors resulted from embedded
system resource restraints can be reduced for testing. With the
cross-testing technology, test case, test driver and target program

can be cross-compiled automatically and uploaded to target-side
for automatic implementation. Target-side test log data including
runtime data, output result, and data of each core utilization during
runtime from target-side CPU can be passed to host-side for run-
time analysis, results of which can also be visually presented. This
helps tackling the issues of (1) and (4).

To address issue (5), we instrument proper lock mechanism,
such as mutex of C++, to source code segment of target program
pertinent to performance testing. This way the share data can be
shielded, and accurate testing results can be ensured. As for multi-
core system performance monitor, to analyze overhead of each CPU
core in the embedded system, ARM Linux system call is also requi-
site to effectively monitor CPU core number allocated by the task.
Repetitive automatic multi-round testing, similarly, provides a vital
scenario to analyze more precisely what performance the task is
executing in embedded system, and to locate bottleneck to be
tackled. We measure the response time of target program(parallel
program) with different interrupt intervals using different core pro-
cessor numbers on the ARM11 multi-core platform. The test data
show that the response time generally decreases as number of
cores increases. This provides evidences that our constructed test-
ing environment can not only reduce burdens of test engineer, but
also enhance efficiency of multi-core embedded testing task. This
helps relieve both issues (3) and (5). Finally, a set of usability testing
has been arranged to evaluate testing reliability for issue (6).

2. Related work

Delamaro et al. (2006) developed a coverage testing tool for
mobile device software. The tool, named JaBUTi/ME, mainly sup-
ports java source code and can solve restrictions of mobile device
performance and storage. Testing conducted on mobile device is
difficult since issues such as memory limitations, persistent storage,
and network connection availability have to be taken into consid-
eration.

The tool not only can be implemented on emulators, but also
can help testing on mobile device. With a desktop computer, test
engineer can implement testing, instrument class, and generate
test session on mobile devices. Communication between desktop
computer and mobile device is exchanged through test server.
Execution of test case can be monitored through the transfer of
trace data when instrumented code is being executed on mobile
device. This approach can reduce workloads from testing mobile
device. Visualized interface of test result allows test engineer to
be informed of what programs are to be executed. However, the
tool does not support automatic testing. Failure of automatically
generating test input data and test case results in more tasks from
test engineer to edit test source code and manually generating test
input data.

Ki et al. (2008) proposed an automated scheme of embedded
software interface test based on the emulated target board called
“Justitia”. The setting of breakpoints allows test engineer to debug.
However, the tool is efficient only to experienced test engineer who
is skilled in the embedded system architecture.

The merit of Justitia is in its automatically detecting errors capa-
bility on program interface. Embedded software testing is engaged
by combining the existing monitoring and debugging technology
of emulator. By defining embedded software interface pattern, an
automated scheme is created for locating source code interface. The
tool can automatically generate test case, namely, interface test fea-
ture, location of interface, symbol to be monitored at the interface,
input data, and expected output, and execute test case using emula-
tion testing technology. Further, the system also supports memory
test and interrupt test. After testing is finished, result of test
coverage and interface error is presented on visualized inter-
face. The system mainly supports single/unit testing rather on



Download English Version:

https://daneshyari.com/en/article/462032

Download Persian Version:

https://daneshyari.com/article/462032

Daneshyari.com

https://daneshyari.com/en/article/462032
https://daneshyari.com/article/462032
https://daneshyari.com

