The Journal of Systems and Software 85 (2012) 132-151

Contents lists available at ScienceDirect

Srstoms and S

i

i

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Controlling software architecture erosion: A survey

Lakshitha de Silva*, Dharini Balasubramaniam

School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SX, UK

ARTICLE INFO ABSTRACT

Article history:

Received 30 June 2010

Received in revised form 20 July 2011
Accepted 21 July 2011

Available online 27 July 2011

Software architectures capture the most significant properties and design constraints of software systems.
Thus, modifications to a system that violate its architectural principles can degrade system performance
and shorten its useful lifetime. As the potential frequency and scale of software adaptations increase
to meet rapidly changing requirements and business conditions, controlling such architecture erosion
becomes an important concern for software architects and developers. This paper presents a survey of
techniques and technologies that have been proposed over the years either to prevent architecture ero-
sion or to detect and restore architectures that have been eroded. These approaches, which include tools,
techniques and processes, are primarily classified into three generic categories that attempt to minimise,
prevent and repair architecture erosion. Within these broad categories, each approach is further broken
down reflecting the high-level strategies adopted to tackle erosion. These are: process-oriented architec-
ture conformance, architecture evolution management, architecture design enforcement, architecture to
implementation linkage, self-adaptation and architecture restoration techniques consisting of recovery,
discovery and reconciliation. Some of these strategies contain sub-categories under which survey results
are presented.

We discuss the merits and weaknesses of each strategy and argue that no single strategy can address
the problem of erosion. Further, we explore the possibility of combining strategies and present a case for

Keywords:

Software architecture
Architecture erosion

Design erosion

Software decay

Controlling architecture erosion
Survey

further work in developing a holistic framework for controlling architecture erosion.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Software systems are under constant pressure to adapt to chang-
ing requirements, technologies and social landscapes. At the same
time these systems must continue to deliver acceptable levels of
performance to users. Often, modifications made to a software sys-
tem over a period of time damage its structural integrity and violate
its design principles. As a result the system may exhibit a tendency
towards diminishing returns as further enhancements are made.
Such software is no longer useful for its intended purpose nor
is it economically viable to maintain. Eroded software often goes
through a process of re-engineering, though this may not always
yield the expected benefits. The alternative is to build a replace-
ment system from scratch, which clearly would require a sizeable
investment. Moreover, software have become key assets in organi-
sations that sell them as well as in those which use them. Ensuring
these systems continue to perform as expected over long periods
of time is vital for the sustainability of these organisations.

* Corresponding author. Tel: +44 1334 463253; fax: +44 1334 463253.
E-mail addresses: lakshitha.desilva@acm.org (L. de Silva),
dharini@cs.st-andrews.ac.uk (D. Balasubramaniam).

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.,js5.2011.07.036

Software erosion is not a new concept. Parnas (1992) argues that
software aging is inevitable but nevertheless can be controlled or
even reversed. He highlights the causes of software aging as obso-
lescence, incompetent maintenance engineering work and effects
of residual bugs in long running systems. However, later works
in this area such as those carried out by Huang et al. (1995) and
Grottke et al. (2008) define software aging as the gradual degrada-
tion of performance in executing software processes due to changes
in the runtime state (e.g. memory leaks). In this paper we regard
erosion as the overall deterioration of the engineering quality of a
software system during its evolution (see Section 2.2). Erosion is
often a contributory factor to the kind of software aging studied by
Huang et al. and Grottke et al.

The impact of erosion is profound when the damage affects the
architecture of a software system. Software architecture (Perry and
Wolf, 1992; Shaw and Garlan, 1996) establishes a crucial founda-
tion for the systematic development and evolution of software and
forms a cycle of influence with the organisation to which the sys-
tem belongs (Bass et al., 2003). It provides a high level model of the
structure and behaviour of a system in terms of its constituent ele-
ments and their interactions with one another as well as with their
operating environment. Architecture also encompasses rationale,
which forms the basis for the reasoning and intent of its designers
(Perry and Wolf, 1992).


dx.doi.org/10.1016/j.jss.2011.07.036
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:lakshitha.desilva@acm.org
mailto:dharini@cs.st-andrews.ac.uk
dx.doi.org/10.1016/j.jss.2011.07.036

L. de Silva, D. Balasubramaniam / The Journal of Systems and Software 85 (2012) 132-151 133

In this work we focus on architecture erosion which possibly
plays the biggest role in accelerating software erosion. Architec-
ture erosion is usually the result of modifications to a system that
disregard its fundamental architectural rules. Although a single
violation is unlikely to produce an adverse effect on the system,
the accumulation of such changes over time can eventually create
a mismatch between the implemented software and its architec-
ture. The effects of architecture erosion tend to be systemwide and,
therefore, harder to rectify. Other forms of software degeneration
such as inferior quality code are typically easier to repair.

Architecture erosion and its effects are widely discussed in lit-
erature. Perry and Wolf (1992) differentiate architecture erosion
from architecture drift as follows: erosion results from violating
architectural principles while drift is caused by insensitivity to the
architecture. As the underlying causes for both are the same, we will
not consider this difference for the purpose of our survey. Addi-
tionally, the notion of software architecture erosion is discussed
using a number of different terms such as architectural degener-
ation (Hochstein and Lindvall, 2005), software erosion (Dalgarno,
2009), design erosion (van Gurp and Bosch, 2002), architectural
decay (Riaz et al., 2009), design decay (Izurieta and Bieman, 2007),
code decay (Eick et al., 2001; Stringfellow et al., 2006) and software
entropy (Jacobson, 1992). Although some of these terms imply that
erosion occurs at different levels of abstraction (for instance code
decay may potentially be considered insignificant at the architec-
tural level), the underlying view in each discussion is that software
degeneration is a consequence of changes that violate design prin-
ciples.

Mechanisms for controlling architecture erosion have been
traditionally centred on architecture repair as evident from the
large body of published work (e.g. Harris et al., 1995; Bellay and
Gall, 1997; Gannod and Cheng, 1999). Architecture repair typ-
ically involves using reverse engineering techniques to extract
the implemented architecture from source artefacts (recovery),
hypothesising its intended architecture (discovery) and applying
fixes to the eroded parts of the implementation (reconciliation).
Subsequent research in this area focuses more on erosion pre-
vention schemes (e.g. Mae (Roshandel et al., 2004) and Archjava
(Aldrich et al., 2002)) and explores concepts from other areas of
computer science such as artificial intelligence to increase the
accuracy of architecture discovery and recovery techniques (e.g.
Bayesian learning-based recovery (Magbool and Babri, 2007)).

This paper presents a classification of strategies for controlling
architecture erosion and a survey of currently available approaches
under each category in the classification. Section 2 of the paper
describes architecture erosion with the aid of a few industrial
examples and briefly discusses related work in the form of other
surveys with a similar aim. Section 3 introduces the classification
scheme while Sections 4-9 present the survey results under this
classification. For each approach, we provide evidence of adoption
where available, and a discussion of efficacy and cost-benefit anal-
ysis based on our own experience and material from literature.
In Section 10 we discuss some of the factors that may influence
the selection of an erosion control strategy along with possibilities
for using strategies in combination with one another. In conclu-
sion, Section 11 outlines the state-of-the-art with respect to current
strategies and presents some thoughts on future work.

2. Background

In this section we provide the context and motivation for the
rest of the paper. Based on industrial case studies, we recognise that
architecture erosion is often an inevitable outcome of the complex-
ity of modern software systems and current software engineering
practices, requiring approaches for controlling erosion at different

stages of the software life cycle. We also introduce the terminology
used in the remainder of the article and build a case for this sur-
vey by highlighting the strengths and drawbacks of previous survey
attempts.

2.1. Context

The deterioration of software systems over time has been widely
discussed since the late 60s debate on the “software crisis” (Naur
and Randell, 1969; Dijkstra, 1972). Evolving software systems
gradually become more complex and harder to maintain unless
deliberate attempts are made to reduce this complexity (Lehman,
1996). At the same time, these software systems have to be contin-
ually upgraded to adapt to changing domain models, accommodate
new user requirements and maintain acceptable levels of perfor-
mance (Lehman, 1996). Therefore, complexity becomes a necessary
evil to prevent software from becoming obsolete too soon.

Complexity, however, makes it harder to understand and change
a design, leading to programmers making engineering decisions
that damage the architectural integrity of the system. Eventually,
the accumulation of architectural violations can make the software
completely untenable. Lack of rigorous design documentation and
poor understanding of design fundamentals make a complex sys-
tem even harder to maintain (Parnas, 1992). Furthermore, software
architectures that have not been designed to accommodate change
tend to erode sooner (Parnas, 1992).

Architecture erosion can also result from modern software
engineering practices. Architectural mismatches can arise in
component-based software engineering (CBSE) due to assump-
tions that reusable components make about their host environment
(Garlan et al,, 1995). New challenges in CBSE like trust, re-
configurability and dependability create enormous demands on the
architectures of evolving software systems (Garlan et al., 2009). In
addition, modern iterative software development processes (such
as agile programming methods) may cause the occurrence of archi-
tecture erosion sooner rather than later because they place less
emphasis on upfront architectural design (van Gurp and Bosch,
2002).

A number of case studies indicate that architecture erosion is
widespread in the industry. Eick et al. (2001) present a study of a
large, 15-year old telecommunication software system developed
in C/C++. They derive a set of indices from change request data
to measure the extent of erosion and its impact on the system.
Although termed code decay, the module level changes have archi-
tectural level impact. The study shows a clear relationship between
erosion and an increased effort to implement changes, an increased
number of induced defects during changes, increased coupling and
reduced modularity. In another commonly cited example of archi-
tecture erosion, Godfrey and Lee (2000) describe their analysis of
the extracted architectures of the Mozilla web browser (which sub-
sequently evolved into Firefox) and the VIM text editor. Both these
software products showed a large number of undesirable interde-
pendencies among their core subsystems. In fact, the badly eroded
architecture of Mozilla caused significant delays in the release of
the product and forced developers to rewrite some of its core mod-
ules from scratch (van Gurp and Bosch, 2002; van Gurp et al., 2005).
Other similar findings have been reported on popular open source
projects such as FindBugs (Sutton, 2008), Ant (Dalgarno, 2009) and
version 2.4 of the Linux kernel (van Gurp and Bosch, 2002).

The impact of architecture erosion is far reaching and has an
associated cost. In the worst case an eroded software system that
is not salvageable requires complete re-development. Even if a
system does not become unusable, erosion makes software more
susceptible to defects, incurs high maintenance costs, degrades per-
formance and, of course, leads to more erosion. Consequently, the
system may lose its value, usefulness, technical dominance and



Download English Version:

https://daneshyari.com/en/article/462039

Download Persian Version:

https://daneshyari.com/article/462039

Daneshyari.com


https://daneshyari.com/en/article/462039
https://daneshyari.com/article/462039
https://daneshyari.com

