
Dynamic object process graphs

Jochen Quante, Rainer Koschke *

Software Engineering Group, Computer Science, Faculty 3, University of Bremen, 28359 Bremen, Germany

Available online 26 June 2007

Abstract

A trace is a record of the execution of a computer program, showing the sequence of operations executed. A trace may be obtained
through static or dynamic analysis. An object trace contains only those operations that relate to a particular object.

Traces can be very large for longer system executions. Moreover, they lack structure because they do not show the control dependen-
cies and completely unfold loops. Object process graphs are a finite concise description of dynamic object traces. They offer the advan-
tage of representing control dependencies and loops explicitly.

This article describes a new technique to extract object process graphs through dynamic analysis and discusses several applications, in
particular program understanding and protocol recovery. A case study is described that illustrates and demonstrates use and feasibility of
the technique. Finally, statically and dynamically derived object process graphs are compared.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Tracing; Protocol recovery; Dynamic analysis; Program understanding; Reverse engineering

1. Introduction

Program slicing is a technique that allows one to identify
the statements of the program that influence a variable at a
certain program location (Weiser, 1979). It keeps only
those statements that are needed to understand how a cer-
tain variable, say V, is computed, that is, all statements that
compute values directly or indirectly used in the calculation
for V (data dependency) and all the statements that decide
whether these statements are executed at all (control depen-
dency). Similarly, object process tracing is a technique that
identifies all statements that operate on an object of interest
and all the statements that decide whether these statements
are executed at all plus the flow of control between these
statements. The result is an object process graph, that is,
a view on the control flow graph from the perspective of
a single object. Object process tracing is an enabling tech-

nology with applications in many reverse engineering tasks,
such as program understanding and protocol recovery.

1.1. Our previous work

Koschke and Zhang (2001) sketched a method for pro-
tocol recovery based on object process graphs. Through
unifying different usages of a component in a combined
graph representation, a first hint of its underlying protocol
may be obtained (black-box understanding). This informa-
tion may be complemented through analyzing the internals
of the component, such as explicit checks of preconditions
that may raise exceptions (glass-box understanding). Fur-
thermore, the user may validate and enhance the protocol
as extracted or may hypothesize a protocol that may then
be checked against the actual code (similarly to the idea
of the reflexion model in Murphy et al. (1995)).

If a component is a class or abstract data type, it can be
instantiated multiple times. Each such instance is an object.
A protocol then describes the allowable sequences of
operations on every object that is an instance of that
component.

0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.06.005

* Corresponding author.
E-mail addresses: quante@informatik.uni-bremen.de (J. Quante),

koschke@informatik.uni-bremen.de (R. Koschke).
URL: http://www.informatik.uni-bremen.de/st/ (R. Koschke).

www.elsevier.com/locate/jss

Available online at www.sciencedirect.com

The Journal of Systems and Software 81 (2008) 481–501

mailto:quante@informatik.uni-bremen.de
mailto:koschke@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/st/


As a first step toward the underlying protocol, we
may extract every sequence of operations on a particular
object – essentially every object trace. These object traces
may then be unified in the black-box understanding part
of protocol recovery. Heiber (2000) investigates how to
recover protocols from such static usage patterns. He also
discusses different representations of a protocol.

Eisenbarth et al. (2005) describe in detail how object
traces can be extracted statically for individual stack and
heap objects. They introduce object process graphs to repre-
sent such traces. Several other researchers use dynamic
analysis instead (Ammons et al., 2002; Gschwind and
Oberleitner, 2003; Xie and Notkin, 2004; Xie, 2003; Wha-
ley et al., 2002). They typically create recordings of invoca-
tions of the component’s methods in which they later try to
find patterns of execution.

1.2. Contributions

The method described in this article is a stepping stone
of our protocol reconstruction undertaking. We describe
a new dynamic technique to obtain object process graphs.
Object process graphs are finite concise descriptions of
object traces. They are essentially sparser control flow
graphs that contain only those operations relevant to one
object. While dynamic object traces may grow virtually
infinitely, object process graphs are limited by the number
of nodes and edges in the original control flow graph. We
demonstrate that dynamically derived object process
graphs can not only serve as a basis for protocol recovery
but can also be a good starting point for understanding a
program. Also, we compare static and dynamic tracing
results to each other.

This paper differs from our earlier paper on this subject
(Quante and Koschke, 2006) by additional case studies for
program understanding, a discussion on how the technique
that was previously described for C can be extended to
object-oriented programs, and a quantitative comparison
of static and dynamic object process graphs.

1.3. Overview

The remainder of this article is organized as follows.
Section 2 describes the concepts of object traces and pro-

cess graphs. Section 3 describes several potential applica-
tions, and Section 4 explains the technique used to
extract dynamic object process graphs. Section 5 presents
a case study demonstrating use and feasibility of the tech-
nique, and Section 6 compares the results of static and
dynamic tracing. Section 7 discusses related research.

2. Traces for individual objects

In this section, we define what a trace is in our context
and show how sets of traces can be represented by an
object process graph. Then, we shortly discuss the differ-
ences between static and dynamic tracing.

We start with a motivating example. Consider the C
program in Fig. 1. It deals with two stacks *s1 and *s2.
We assume the usual semantics for stacks here. Function
read reads a stack from a file, and init creates an empty
stack. Although the program has passed all tests, how sure
can we be that it does not cause a failure? And in fact, it
contains a potential fault that is difficult to spot in the
code: a violation of the stack protocol for variable *s1.
Through the static analysis by Eisenbarth et al. (2005),
we can extract all sequences of operations potentially
applied to *s1.

Each such sequence is a trace. According to Hoare
(1985), ‘‘a trace of the behaviour of a process is a finite
sequence of symbols recording the events in which the pro-
cess has engaged up to some moment in time.’’ While the
term process is often used in the context of concurrency,
it may also be used to denote any kind of object whose
behavior is of interest to us. By object, we mean a local
or global variable or a variable allocated on the heap at
runtime. Hence, we consider an object trace a sequence of
operations applied to one specific object.

2.1. Object process graphs

The potentially infinite traces can be described in a finite
closed form through object process graphs. An object pro-
cess graph (OPG) is a graph:

OPG :¼ ðN ;EÞ with E � N � N ;

where each node n 2 N and each edge e 2 E can be of one
of the following types:

Fig. 1. Example source code.

482 J. Quante, R. Koschke / The Journal of Systems and Software 81 (2008) 481–501



Download English Version:

https://daneshyari.com/en/article/462078

Download Persian Version:

https://daneshyari.com/article/462078

Daneshyari.com

https://daneshyari.com/en/article/462078
https://daneshyari.com/article/462078
https://daneshyari.com

