The Journal of Systems and Software 83 (2010) 1078-1093

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

iy

Automating the construction of domain-specific modeling languages

for object-oriented frameworks

André L. Santos **, Kai Koskimies °, Anténia Lopes ?

2 Department of Informatics, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
b Department of Software Systems, Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland

ARTICLE INFO ABSTRACT

Article history:

Received 10 February 2009

Received in revised form 31 August 2009
Accepted 27 January 2010

Available online 4 February 2010

Keywords:

Domain-specific modeling
Object-oriented frameworks
Software product-lines
Aspect-oriented programming

layer.

The extension of frameworks with domain-specific modeling languages (DSML) has proved to be an effec-
tive way of improving the productivity in software product-line engineering. However, developing and
evolving a DSML is typically a difficult and time-consuming task because it requires to develop and main-
tain a code generator, which transforms application models into framework-based code. In this paper, we
propose a new approach for extending object-oriented frameworks that aims to alleviate this problem.
The approach is based on developing an additional aspect-oriented layer that encodes a DSML for build-
ing framework-based applications, eliminating the need of implementing a code generator. We further
show how a language workbench is capable of automating the construction of DSMLs using the proposed

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Object-oriented frameworks are an important means for
realizing software product-lines (Bosch, 2000) as they allow partial
design and implementation solutions to be defined for families of
applications. In this situation, the individual software products of
the product-line are developed by instantiating the corresponding
framework. The activities related to developing a framework are
known as domain engineering, whereas application engineering
refers to the development of individual, framework-based
applications.

Learning how to correctly use a non-trivial framework is a
difficult and time-consuming activity (Moser and Nierstrasz,
1996). The situation is even worse if the framework changes
regularly, as happens in the case of frameworks for software prod-
uct-lines. An effective way of facilitating the task of application
engineers is to provide them with a domain-specific modeling
(DSM) solution for the framework (Kelly and Tolvanen, 2008). The
conventional way of realizing a DSM solution involves the develop-
ment of (i) a domain-specific modeling language (DSML) that
captures the conceptual variability of the family of applications that
can be built with the framework, and (ii) a code generator for
generating full working framework-based applications from the
models. We refer to such realizations of DSM as conventional
approaches.

* Corresponding author. Tel./fax: +351 912483944.
E-mail addresses: andre.santos@di.fc.ul.pt (A.L. Santos), kai.koskimies@tut.fi (K.
Koskimies), mal@di.fc.ul.pt (A. Lopes).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.01.047

Using model-driven engineering terminology, a DSML can be
defined by a meta-model, whereas application models can be de-
fined as instances of the meta-model. Meta-models and required
generators can be developed using the so-called language work-
benches (Fowler, 2008), which are tools targeted for developing do-
main-specific development environments, such as MetaEdit+
(MetaCase, 2008), Microsoft DSL Tools (Greenfield and Short,
2005), or Eclipse-based technologies (Eclipse Foundation, 2009).
Fig. 1 illustrates the conventional approach for having a DSM solu-
tion for a framework (Kelly and Tolvanen, 2008). At the problem
domain side, the meta-model describes domain concepts, whereas
an application model describes instances of those concepts. At the
solution side, the object-oriented framework provides an adapt-
able and partial implementation that is tailored and filled out by
application-specific code, which is generated from application
models.

DSM approaches claim that it is possible to increase productiv-
ity in application engineering activities by up to an order of mag-
nitude (Kelly and Tolvanen, 2008). However, these productivity
gains imply a significant additional effort in domain engineering
activities, since the meta-model and the code generator have to
be developed and maintained as the framework evolves. A DSML
is the result of several development iterations, and nevertheless,
new increments have to be developed when the domain evolves,
implying modifications in the framework, meta-model, and gener-
ators. This makes the evolution of the DSM solution challenging.

The difficulty of building and maintaining a DSM solution stems
essentially from the complexity of the mapping between the con-
cept instances expressed in the DSML and the code that has to be

http://dx.doi.org/10.1016/j.jss.2010.01.047
mailto:andre.santos@di.fc.ul.pt
mailto:kai.koskimies@tut.fi
mailto:mal@di.fc.ul.pt
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

A.L. Santos et al./The Journal of Systems and Software 83 (2010) 1078-1093 1079

problem domain solution domain

Meta-model

instance of 4\ instantiates't\
Application Application
Model Code

Fig. 1. Conventional realization of DSM solutions.

e]6)
Framework

Code
Generator

generated. In principle, the simpler the mapping is, the easier it
will be to implement and evolve the code generator. As a matter
of fact, DSM approaches are pointed out to be particularly suited
to black-box frameworks (Roberts and Johnson, 1997), given that
in this case the code generation is confined to glue code that com-
poses default components. However, even though the rules for
generating such glue code are typically fairly straightforward, they
cannot be inferred automatically on the basis of the framework
code, because the mechanisms for instantiating the framework-
provided concepts are not explicitly represented in the framework
implementation. A code generator has thus to be manually devel-
oped for implementing this mapping.

In this paper we propose a new approach for developing DSM
solutions for object-oriented frameworks based on the extension
of the framework with an additional layer, which we refer to as
the DSM layer. The idea of this layer is to encode the DSML meta-
model and all the information that is needed to generate applica-
tion-specific code from application models. The paper further
shows how the DSM layer can be realized using aspect-oriented
programming (AOP), capitalizing on our previous work (Santos
et al., 2007) that proposes a technique based on AOP for modular-
izing framework hot-spots through (framework) specialization as-
pects. In principle, the realization of the approach with AOP is
directly applicable to any object-oriented framework in its existing
form (i.e. there are no special requirements and no need of
modification).

The proposed realization of the DSM layer consists of several
specialization aspects annotated with additional meta-data for en-
abling both the meta-model and the mapping between application
models and framework-based code to be inferred. We shall show
that this can be achieved by means of a generic language work-
bench, which on the one hand extracts meta-models from DSM
layers, while on the other hand is capable of processing instances
of those meta-models for generating application code.

The proposed language workbench was implemented in an
eclipse-based (Eclipse Foundation, 2009) tool named ALFAMA
(Santos, 2008). The tool supports DSM layers written in Aspect]
(Eclipse Foundation, 2009) and uses the eclipse modeling frame-
work (EMF) (Eclipse Foundation, 2009) for describing meta-models
and application models. As a proof-of-concept, we have imple-
mented the proposed DSM layer for the eclipse rich client platform
(RCP) framework (McAffer and Lemieux, 2005), a framework for
developing stand-alone applications based on eclipse’s dynamic
plug-in model and Ul facilities, such as menus, actions bars, tree-
views, etc. We have tested ALFAMA by developing sample applica-
tions that make use of the eclipse RCP features that were included
in the developed DSM solution.

Comparing to the state-of-the-practice, the approach proposed
in this paper embodies a major strategic difference, given that
we propose frameworks to have a “built-in” DSML (syntax and
semantics) encoded by the DSM layer. Domain engineers are able
to effectively extend a framework’s implementation with the
encoding of a DSML, which can be directly used to build frame-

work-based applications, without the need of having a code gener-
ator. In this way, domain engineers are relieved of the maintenance
problems that are typically associated to the development of code
generators.

The paper proceeds as follows. Section 2 presents an overview
of our approach. Section 3 explains how conventional framework
hot-spots can be represented in a modular way in terms of special-
ization aspects. Section 4 addresses the development of the DSM
layer using specialization aspects. Section 5 explains how DSMLs
can be automatically derived from DSM layers. Section 6 presents
the ALFAMA tool. Section 7 compares the proposed approach with
conventional approaches for DSM. Section 8 describes the case
study on eclipse RCP. Section 9 discusses related work, and Section
10 concludes the paper.

2. Approach overview

This section presents an overview of our approach (see Fig. 2).
The approach relies on a language workbench that automates the
DSML construction and usage at the expense of some new develop-
ment activities. The following summarizes the role of the different
elements involved in the process of developing the DSM solutions
using our approach, making a comparison with the conventional
approach (depicted in Fig. 1):

e Domain engineers. Domain engineers have to develop a DSM
layer in addition to the framework, while they are relieved of
both implementing a code generator and defining the DSML
concepts separately (i.e. externally to the framework
implementation).

e Language workbench. The language workbench extracts the
meta-model that defines the DSML from the DSM layer. Addi-
tionally, it is able to transform application models into code
based on the DSM layer. The language workbench is generic,
in the sense that it can be used for multiple frameworks, as long
as the DSM layers are developed in the supported programming
language (in this work, Aspect] for Java frameworks).

e Application engineers. Application models are developed by
application engineers as if a conventional approach was being
used. Although the generated code is based on the DSM layer
instead of directly on the framework, application models are
developed in the same way.

The DSM layer includes a formal representation of the meta-
model embedded in its modules, using modeling constructs that
are equivalent in terms of expressiveness to those that can be
found in existing meta-modeling technologies (MetaCase, 2008;
Greenfield and Short, 2005; Eclipse Foundation, 2009). When
implementing the ALFAMA prototype as a proof-of-concept of
the proposed language workbench, our option was to consider
the modeling constructs that are available in EMF (Eclipse Founda-
tion, 2009). EMF is a Java implementation of the meta-object facil-
ity (MOF) (OMG, 2002), a standard for defining modeling

solution domain

DSM 00
Layer Framework

instamiatesA,\

Application
Code

problem domain

Meta-model

instance of/?\

Application
Model

= exiacior]

Language
Workbench

P-{ gencrator =

Fig. 2. Proposed approach for realizing DSM solution.

Download English Version:

https://daneshyari.com/en/article/462087

Download Persian Version:

https://daneshyari.com/article/462087

Daneshyari.com

https://daneshyari.com/en/article/462087
https://daneshyari.com/article/462087
https://daneshyari.com/

