
Structuring the modeling space and supporting evolution in software product
line engineering

Deepak Dhungana a,*, Paul Grünbacher b,c, Rick Rabiser b, Thomas Neumayer b

a Lero – The Irish Software Engineering Research Centre, University of Limerick, Limerick, Ireland
b Christian Doppler Laboratory for Automated Software Engineering, Johannes Kepler University, Linz, Austria
c Institute for Systems Engineering and Automation, Johannes Kepler University, Linz, Austria

a r t i c l e i n f o

Article history:
Received 8 February 2009
Received in revised form 3 February 2010
Accepted 11 February 2010
Available online 24 February 2010

Keywords:
Product line engineering
Model evolution
Variability modeling

a b s t r a c t

The scale and complexity of product lines means that it is practically infeasible to develop a single model
of the entire system, regardless of the languages or notations used. The dynamic nature of real-world sys-
tems means that product line models need to evolve continuously to meet new customer requirements
and to reflect changes of product line artifacts. To address these challenges, product line engineers need
to apply different strategies for structuring the modeling space to ease the creation and maintenance of
models. This paper presents an approach that aims at reducing the maintenance effort by organizing
product lines as a set of interrelated model fragments defining the variability of particular parts of the
system. We provide support to semi-automatically merge fragments into complete product line models.
We also provide support to automatically detect inconsistencies between product line artifacts and the
models representing these artifacts after changes. Furthermore, our approach supports the co-evolution
of models and their respective meta-models. We discuss strategies for structuring the modeling space
and show the usefulness of our approach using real-world examples from our ongoing industry
collaboration.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Many software product lines today are developed and
maintained using model-based approaches, e.g., feature-oriented
modeling (Kang et al., 1990; Czarnecki and Eisenecker, 1999;
Asikainen et al., 2006), decision-based approaches (Dhungana
et al., 2007a; Schmid and John, 2004), orthogonal approaches
(Bachmann et al., 2003), architecture modeling languages
(Matinlassi, 2004; Dashofy et al., 2001), or UML-based techniques
(Atkinson et al., 2002; Gomaa, 2005). Tools have been developed
to automate domain and application engineering based on models
defining core assets and their commonalities and variability
(Dhungana et al., 2007c). General purpose variability modeling ap-
proaches (Gomaa and Shin, 2002; Sinnema et al., 2004; Dhungana
et al., 2007a) allow defining the variability of arbitrary domain-
specific assets via meta-models that specify the possible elements
of variability models (e.g., types of reusable assets, their attributes,
types of dependencies).

No matter which modeling approach is followed, product line
engineering (PLE) faces two challenges: (i) developing a single

product line model is practically infeasible due to the scale and
complexity of today’s systems: the high number of features and
components in real-world systems means that modelers need
strategies and mechanisms to organize the modeling space. (ii)
new customer requirements, technology changes, and internal
enhancements lead to the continuous evolution of a product line’s
reusable assets: While product line engineers try to understand
and capture the variability of a complex existing system, the reus-
able assets are frequently changed to meet evolving business
needs. Evolution support becomes particularly important in a
model-based approach to ensure consistency after changes to
meta-models, models, and actual development artifacts. Product
line approaches need to treat maintenance and evolution as critical
due to the longevity of many systems. Many existing approaches
are instead based on the assumption that a product line is fairly
stable. However, such stability cannot be taken for granted. PLE
should thus treat evolution as the normal case and not as the
exception (Dhungana et al., 2008b).

An analysis of development practices of our industry partner
Siemens VAI1, the world’s leading steel plant building company,
revealed three important issues related to evolution in model-based
PLE:

0164-1212/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.02.018

* Corresponding author.
E-mail addresses: deepak.dhungana@gmail.com, deepak.dhungana@lero.ie

(D. Dhungana), paul.gruenbacher@jku.at (P. Grünbacher), rabiser@ase.jku.at
(R. Rabiser), neumayer@ase.jku.at (T. Neumayer). 1 http://www.industry.siemens.com/metals/en/.

The Journal of Systems and Software 83 (2010) 1108–1122

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2010.02.018
mailto:<xml_add>deepak.dhungana@gmail.com
mailto:paul.gruenbacher@jku.at
mailto:rabiser@ase.jku.at
mailto:neumayer@ase.jku.at
http://www.industry.siemens.com/metals/en/
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


(i) Modeling space structuring. The size of many software sys-
tems is far beyond the ability of any individual or small
group to understand them in detail. This prevents effective
coordination because a single individual or small group can-
not direct its work and keep all the implementation details
in focus (Kraut and Streeter, 1995). To address this challenge
the modeling space has to be structured, so that large product
lines can be managed more easily. This challenge is related
to Conway’s law (Conway, 1968; Herbsleb and Grinter,
1999) describing dependencies between the communication
structure of a development team and the technical structure
of a system.

(ii) Model consistency. Different parts of the system evolve at dif-
ferent speeds and have to be kept consistent with the models
describing these parts. Product line assets evolve continu-
ously to address changes such as new customer require-
ments, technology changes, or refactoring. For example, a
large component may be divided into several parts, a com-
ponent may be moved from one subsystem to another, or
new relationships between components may be established.
It is therefore essential to understand, model, and maintain
the links between the product line’s variability models and
its asset base. Engineers should be supported in detecting
and keeping track of inconsistencies during modeling (Vier-
hauser et al., 2010).

(iii) Meta-model evolution. As pointed out domain meta-models
are also subject to evolution. In an effective model-driven
development cycle modeling tools and techniques must be
adaptable to changing requirements in the problem domain.
For instance, the introduction of new asset types or the mod-
ification of existing asset types require updating existing
models. The domain meta-models need to co-evolve with
the variability models.

Based on our analysis of current practices and needs of our
industry partner, we have developed a model-based approach for
defining, managing, and utilizing product lines (Dhungana et al.,
2007b; Rabiser et al., 2007). Supporting evolution has been a crit-
ical success factor during development. Our approach is based on a
simple assumption: A small model is easier to maintain than a
large one. Instead of creating a single large product line variability
model we use model fragments to describe the variability of se-
lected parts of the system. These model fragments also represent
the units of evolution in our approach (Dhungana et al., 2008a).
The approach meets the demands of real-world development pro-
cesses as different teams can work on variability model fragments
describing the parts of the system they know best.

We have presented our approach to deal with evolution in pre-
vious publications (Dhungana et al., 2008b,a; Grünbacher et al.,
2009). Here, we further elaborate the underlying issues and pres-
ent our experiences of applying the tool-supported approach for
a real-world product line of Siemens VAI. The company is main-
taining a software product line for the automation of continuous
casting in steel plants.

In particular we claim three contributions: (i) An approach
based on model fragments for the decentralized creation and main-
tenance of product line variability models. (ii) Tool support for the
automated detection of changes to keep models and architecture
consistent. (iii) Tools and techniques facilitating meta-model evolu-
tion for propagating changes in the domain to already existing var-
iability models.

The paper is organized as follows: Section 2 elaborates on the
needs for structuring the modeling space. In Section 3 we describe
our model fragment-based approach. Section 4 presents tool sup-
port for creating and managing the model fragments, consistency
checking, and meta-model evolution. In Section 5 we discuss our

experiences of applying the approach at Siemens VAI and discuss
strengths and weaknesses of our approach. Section 6 presents re-
lated work. Finally, we present conclusions and an outlook on fu-
ture work in Section 7.

2. Structuring the modeling space

Software evolution is challenged by the fact that development
teams require a mix of skills. In many software development orga-
nizations development teams are quite fragmented. Single stake-
holders can only maintain a small part of a large system. As a
result product line engineers need to modularize and organize
the modeling space regardless of the concrete modeling approach
used. There are several strategies for structuring and organizing
the modeling space:

2.1. Mirroring the solution space structure

Whenever product lines are modeled for existing software sys-
tems, the structure of already available reusable assets can provide
a starting point for organizing the modeling space. Models can be
created that reflect the structure of the technical solution, e.g., sep-
arate variability models for different subsystems of a product line.
Similarly, the package structure of a software system or an existing
architecture description can serve as an initial structure. The num-
ber of different models should be kept small to avoid negative ef-
fects on maintainability and consistency. This strategy can be
suitable for instance if the responsibilities of developers and archi-
tects for certain subsystems are clearly established.

2.2. Decomposing into multiple product lines

On a larger scale complex products are often organized using a
multi product line structure (Reiser and Weber, 2006). For exam-
ple, there may be separate product lines for different target cus-
tomers, e.g., mobile phone product lines for senior citizens,
teenagers, and business people (Jaaksi, 2002). Other examples are
complex software-intensive systems such as cars or industrial
plants with system of systems architectures, which may contain
several smaller product lines as part of a larger system. Models
have to be defined for each of these product lines and must be kept
consistent during domain and application engineering. This strat-
egy often means that different teams create and maintain variabil-
ity models for the product line they are responsible for.

2.3. Structuring by asset type

Another way of dealing with the scale of product line models is
to structure the modeling space based on the asset types in the do-
main. Separate models can then be created for different types of
product line assets. Examples are requirements variability models
based on use cases (Halmans and Pohl, 2004), architecture variabil-
ity models (Dashofy et al., 2001), or models for technical and user
documentation (John, 2002). Structuring by asset type allows man-
aging variability in a coherent manner. It is however important to
manage the dependencies between the different types of artifacts
which can easily cause additional complexity. This strategy works
well with orthogonal approaches (Pohl et al., 2005) that suggest
using few variability models that are related with possibly many
asset models.

2.4. Following the organizational structure

This strategy suggests following the structure of the organiza-
tion when creating product line models. Different stakeholders

D. Dhungana et al. / The Journal of Systems and Software 83 (2010) 1108–1122 1109



Download	English	Version:

https://daneshyari.com/en/article/462089

Download	Persian	Version:

https://daneshyari.com/article/462089

Daneshyari.com

https://daneshyari.com/en/article/462089
https://daneshyari.com/article/462089
https://daneshyari.com/

