The Journal of Systems and Software 83 (2010) 1179-1191

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

TALISMAN MDE: Mixing MDE principles

Vicente Garcia-Diaz *, Héctor Fernandez-Fernandez, Elias Palacios-Gonzalez, B. Cristina Pelayo G-Bustelo,

Oscar Sanjuan-Martinez, Juan Manuel Cueva Lovelle

University of Oviedo, Department of Computer Science, Sciences Building, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 27 April 2009

Received in revised form 6 January 2010
Accepted 6 January 2010

Available online 13 January 2010

Keywords:

MDA

Software factory
TALISMAN

MDE

TMDE
Model-Driven

The Model-Driven Engineering approach is progressively gaining popularity in the software engineering
community as it raises the level of abstraction in software development. In TALISMAN MDE framework,
we combine the principles of the two most important initiatives, Model-Driven Architecture and Soft-
ware Factories. Both have their pros and cons, and we select the best from each in TALISMAN MDE. To
show the advantages of TALISMAN MDE, we have developed a systems generator and used it to create
applications for controlling food traceability. The applications are being used in dairies with different
manufacturing processes, using software developed specifically for each dairy by working only with mod-
els, without additional programming.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Model-Driven Engineering (MDE) is an increasingly popular
approach to software engineering that tries to achieve the genera-
tion of application artifacts either automatically or semi-automat-
ically. MDE is a generic term that refers to different initiatives like
the Software Factories (SFs) (Greenfield, 2004), proposed by Micro-
soft or the Model-Driven Architecture (MDA) (Miller et al., 2003),
proposed by the Object Management Group (OMG) (OMG, 2008),
which are providing further impetus to MDE, at least in terms of
the number of publications. There are some others attempts like
the Architecture-Centric Model-Driven Software Development
(AC-MDSD) (Vélter and Stahl, 2006) that should also be taken into
account, but in practice they all have the same underlying ideas.

Some proposals, such as SFs, focus primarily on productivity,
while others, such as MDA, focus on interoperability, portability
and reusability. The contribution of this paper is to present the
TALISMAN MDE (TMDE) proposal, whose main novelty is the use
of a mixture of principles to achieve maximum productivity with
maximum possible interoperability, portability and reusability.

Since we know of no system to build food traceability appli-
cations using any MDE initiative, we show TMDE via a case
study on developing software for food traceability via a systems

* Corresponding author.

E-mail addresses: garciavicente@uniovi.es, vicegd@gmail.com (V. Garcia-Diaz),
UO0887@uniovi.es (H. Fernandez-Ferndndez), palacioselias@uniovi.es (E. Palacios-
Gonzalez), crispelayo@uniovi.es (B. Cristina Pelayo G-Bustelo), osanjuan@uniovi.es
(0. Sanjuan-Martinez), cueva@uniovi.es (J.M.C. Lovelle).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.01.010

generator developed following the TMDE principles, thus obviating
the need to build specific software for each customer, as the mod-
els are used to build software automatically. It is important to note
that the ideas underlying TMDE are not tied to any specific tech-
nology, but could just as easily be applied for any type of software
domain.

The remainder of this paper is structured as follows: first, we
present an overview of SFs and MDA, along with their assessments
by experts. In Section 2 we describe the main concepts of TMDE. In
Section 3 we define food traceability and the origin of our case
study. Section 4 shows the real case study and finally, in Section
5 we indicate our conclusions and possible future work.

1.1. Software factories principles

In Greenfield et al. (2004), after comparing software engineer-
ing with other fields such as civil engineering, the authors have
identified the following problems with traditional software devel-
opment methods: (1) one-off development, (2) monolithic systems
and increasing systems complexity, (3) process immaturity and (4)
rapidly growing demand for software systems. To try to solve these
problems, Microsoft has proposed the concept of the Software Fac-
tory, being its main objective the development of product lines. A
software product line (SPL) is a set of software-intensive systems
that share a common, managed set of features that satisfy the
needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way
(Clements and Northrop, 2002). As defined in Greenfield et al.

http://dx.doi.org/10.1016/j.jss.2010.01.010
mailto:garciavicente@uniovi.es
mailto:vicegd@gmail.com
mailto:UO887@uniovi.es
mailto:palacioselias@uniovi.es
mailto:crispelayo@uniovi.es
mailto:osanjuan@uniovi.es
mailto:cueva@uniovi.es
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

1180 V. Garcia-Diaz et al./ The Journal of Systems and Software 83 (2010) 1179-1191

(2004), a SF is a software product line that configures extensible
tools, processes and content using a software factory template
based on a software factory schema to automate the development
and maintenance of variants of an archetypical product by adapt-
ing, assembling and configuring framework-based components.

To explain this statement, we have to define the four main con-
cepts related to SFs (Lenz and Wienands, 2006).

e Architecture frameworks implement common features of a sys-
tem and provide extension points where these components can
be integrated and extended.

e Product line Development should only attempt to cover a spe-
cific domain or market segment, without attempting to cover
all the possible domains.

e Model-Driven Development is the closest concept to MDA, and
is closely related to Domain-Specific Languages (DSLs) (Mernik
et al., 2005).

e Guidance in Context states that the SFs should include facilities
such as code samples, how-to help pages, articles and so on.

The idea is not to create a system whereby we can create all
kinds of applications automatically, as MDA aspires to do. Rather,
SFs are focused on specific domains or families of software product
lines.

Conceptually, a SF can be divided into two main phases, the cre-
ation of a schema and the creation of a template of that schema.
The SF schema is a model that can be interpreted by humans and
tools, which describes work products, workflows used to produce
the work products and assets used in the enactment of the work-
flows, for a specific family of software products in a given domain
(Greenfield et al., 2004). Therefore, the development process de-
pends on the experience of development, because with a defective
schema the SF will fail. Then, the SF template can be considered as
an instance of the schema (Lenz and Wienands, 2006) that is usu-
ally integrated into a development environment (Fig. 1).

The solution consists of three parts: the first is a common archi-
tecture that is reused for all the solutions of the SF, because they all
have the same basis. The second are schematic repetitive artifacts,

which differ from one solution to another but show a similar prede-
termined pattern and therefore can be abstracted by using domain
specific design patterns (Spinellis, 2001). The last part corresponds
to the specific artifacts that could have the solutions and therefore
must be added manually from the development environment.

1.2. Model-Driven Architecture principles

MDA (Miller et al., 2003) is a set of related standards specified
by the OMG, based mainly on reducing the weight of the imple-
mentation by modeling the system using standards. This follows
a similar approach to concepts that are popular in other engineer-
ing fields. For example, building a bridge requires a detailed plan,
that is, a model.

The three primary goals of MDA are portability, interoperability
and reusability through architectural separation of concerns (Mill-
er et al,, 2003). The idea is to start with models of a high level of
abstraction (Computational Independent Model or CIM) that re-
flect the requirements of the system. Later, the model is subjected
to a transformation that lowers the level of abstraction to a com-
puter model but is still independent of the computer platform used
(Platform Independent Model or PIM) which represent solutions at
design level for the requirements of the CIM. The PIM can be trans-
formed into one or more specific models for one or more desired
technological platforms (Platform Specific Model or PSM). The last
transformation is to convert the PSM into the final artifacts (Imple-
mentation Specific Model or ISM), that are ready to be used or to be
refined and then used. OMG has other defined standards that serve
as a basis for the definition of the MDA.

Fig. 2 shows the entire development process within MDA. As
can be seen, a pure MDA process does not provide for the introduc-
tion of individual artifacts or the use of architecture frameworks.

1.3. Different points of view
There are several recognized experts in the field of MDE, each

having their own opinions about MDA and SFs. Some of their most
relevant statements, in chronological order, are the following:

- B
y Software Factory Schema N Software Factory Template \
Problem Feature Model Guidance and
. Automation
Arquitecture
Framework .
Solution Feature Model DSL designers and
generators
Viewpoints :
|
: Model to Text and Model to Model
Core Assets Artifacts I Transformations
. |
| |
Mappings ‘ ‘ Activities |
T
K / : Solution
: v
Uses EE——
Arquitecture Schematic
Creates e Fr(:amework repetitive artifacts
Leads _— (generated)
The same = ——c = ===
A
Specific Artifacts

- P

Fig. 1. Software Factories overview.

Download English Version:

https://daneshyari.com/en/article/462094

Download Persian Version:

https://daneshyari.com/article/462094

Daneshyari.com

https://daneshyari.com/en/article/462094
https://daneshyari.com/article/462094
https://daneshyari.com

