
Software process improvement through the Lean Measurement (SPI-LEAM) method

Kai Petersen a,b,*, Claes Wohlin a

a School of Computing, Blekinge Institute of Technology, Box 520, SE-372 25 Ronneby, Blekinge, Sweden
b Ericsson AB, Box 518, SE-371 23, Sweden

a r t i c l e i n f o

Article history:
Received 13 September 2009
Received in revised form 7 February 2010
Accepted 7 February 2010
Available online 16 February 2010

Keywords:
Lean software development
Software process improvement
Quality improvement paradigm

a b s t r a c t

Software process improvement methods help to continuously refine and adjust the software process to
improve its performance (e.g., in terms of lead-time, quality of the software product, reduction of change
requests, and so forth). Lean software development propagates two important principles that help pro-
cess improvement, namely identification of waste in the process and considering interactions between
the individual parts of the software process from an end-to-end perspective. A large shift of thinking
about the own way of working is often required to adopt lean. One of the potential main sources of failure
is to try to make a too large shift about the ways of working at once. Therefore, the change to lean has to
be done in a continuous and incremental way. In response to this we propose a novel approach to bring
together the quality improvement paradigm and lean software development practices, the approach
being called Software Process Improvement through the Lean Measurement (SPI-LEAM) Method. The
method allows to assess the performance of the development process and take continuous actions to
arrive at a more lean software process over time. The method is under implementation in industry
and an initial evaluation of the method has been performed.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Software process improvement aims at making the software
process more efficient and increasing product quality by continu-
ous assessment and adjustment of the process. For this several pro-
cess improvement frameworks have been proposed, including the
Capability Maturity Model Integration (CMMI) (CMMI-Product-
Team, 2006) and the Quality Improvement Paradigm (QIP) (Basili,
1985; Basili and Green, 1994). These are high level frameworks
providing guidance what to do, but not how the actual implemen-
tation should look like. The Software Process Improvement
through the Lean Measurement (SPI-LEAM) method integrates
the software quality improvement paradigm with lean software
development principles. That is, it describes a novel way of how
to implement lean principles through measurement in order to ini-
tiate software process improvements.

The overall goal of lean development is to achieve a continuous
and smooth flow of production with maximum flexibility and min-
imum waste in the process. All activities and work products that do
not contribute to the customer value are considered waste. Identi-
fying and removing waste helps to focus more on the value creat-

ing activities (Cumbo et al., 2006; Womack and Jones, 2003). The
idea of focusing on waste was initially implemented in the auto-
motive domain at Toyota (Shingo, 1981) identifying seven types
of waste. The types of waste have been translated to software engi-
neering into extra processes, extra features, partially done work
(inventory), task switching, waiting, motion, and defects (Pop-
pendieck and Poppendieck, 2003). Partially done work (or inven-
tory) is specifically critical (Middleton, 2001). The reason for
inventory being a problem is not that software artifacts take a lot
of space in stock, but:

� Inventory hides defects that are thus discovered late in the pro-
cess (Middleton, 2001).

� Time has been spent on artifacts in the inventory (e.g., reviewing
of requirements) and due to change in the context the require-
ments become obsolete and thus the work done on them useless
(Petersen et al., 2009).

� Inventory impacts other wastes. For example, a high level of
inventory causes waiting times. Formally this is the case in
waterfall development as designers have to wait until the whole
requirements document has been approved (Petersen et al.,
2009). Long waiting times bare the risk of completed work to
become obsolete. Furthermore, high inventory in requirements
engineering can be due to that a high number of extra features
have been defined.

� Inventory slows down the whole development process. Consider
the example of a highway, if the highway is overloaded with cars
then the traffic moves slowly.

0164-1212/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.02.005

* Corresponding author. Address: School of Computing, Blekinge Institute of
Technology, Box 520, SE-372 25, Sweden. Tel.: +46 10 7140572.

E-mail addresses: kai.petersen@bth.se, kai.petersen@ericsson.com (K. Petersen),
claes.wohlin@bth.se (C. Wohlin).

URLs: http://www.bth.se/besq, http://www.ericsson.com (K. Petersen), http://
www.bth.se/besq (C. Wohlin).

The Journal of Systems and Software 83 (2010) 1275–1287

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2010.02.005
mailto:kai.petersen@bth.se
mailto:kai.petersen@ericsson.com
mailto:claes.wohlin@bth.se
http://www.bth.se/besq
http://www.ericsson.com
http://www.bth.se/besq
http://www.bth.se/besq
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


� High inventory causes stress in the organization (Morgan, 1998).

Lean manufacturing has drastically increased the efficiency of
product development and the quality of products in manufacturing
(see for example, Cumbo et al., 2006). When implemented in soft-
ware development lean led to similar effects (cf. Morgan, 1998;
Middleton et al., 2005). Even though lean principles are very prom-
ising for software development, the introduction of lean develop-
ment is very hard to achieve as it requires a large shift in
thinking about software processes. Therefore, an attempt to change
the whole organization at once often leads to failure. This has been
encountered when using lean in manufacturing (Pascale, 1990) and
software development (Middleton, 2001).

To avoid the risk of failure when introducing lean our method
helps the organization to arrive at a lean software process incre-
mentally through continuous improvements. The method relies
on the measurement of different inventories as well as the com-
bined analysis of inventory measurements. The focus on inventory
measurement is motivated by the problems caused by inventories
discussed earlier. Furthermore, inventories also show the absence
of lean practices and thus can be used as support when arguing
for the introduction of the principles. In the analysis of the inven-
tories a system thinking method is proposed as lean thinking re-
quires a holistic view to find the real cause of problems. That is,
not only single parts of the development process are considered,
but the impact of problems (or improvement initiatives) on the
overall process have to be taken into consideration.

Initial feedback on SPI-LEAM was given from two software pro-
cess improvement representatives at Ericsson AB (see Gorschek
and Wohlin, 2006). The objective was to solicit early feedback on
the main assumptions and steps of SPI-LEAM from the company,
which needs triggered the development of the method.

The remainder of the paper is structured as follows: Section 2
presents the related work on lean software development in general
and measurement for lean software development in particular.
Section 3 presents the Software Process Improvement through
the Lean Measurement (SPI-LEAM) Framework. Section 4 presents
a preliminary evaluation of the method. Section 5 discusses the
proposed method with focus on comparison to related work, prac-
tical implications, and research implications. Section 6 concludes
the paper.

2. Related work

2.1. Lean in software engineering

Middleton (2001) conducted two industrial case studies on lean
implementation in software engineering, and the research method
used was action research. The company allocated resources of
developers working in two different teams, one with experienced
developers (case A) and one with less experienced developers (case
B). The responses from the participants was that initially the work
is frustrating as errors become visible almost immediately and are
returned in the beginning. In the long run though the number of
errors dropped dramatically. After the use of the lean method the
teams were not able to sustain the lean method due to organiza-
tional hierarchy, traditional promotion patterns, and the fear of
forcing errors into the open.

Another case study by Middleton et al. (2005) studied a com-
pany practicing lean in their daily work for 2 years. They found that
the company had many steps in the process not being value-adding
activities. A survey among people in the company showed that the
majority supports lean ideas and thinks they can be applied to soft-
ware engineering. Only a minority (10%) is not convinced of the
benefits of lean software development. Statistics collected at the

company show a 25% gain in productivity, schedule slippage was
reduced to 4 weeks from previously months or years, and time
for defect fixing was reduced by 65–80%. The customer response
on the product released using lean development was overwhelm-
ingly positive.

Perera and Fernando (2007) compared an agile process with a
hybrid process of agile and lean in an experiment involving 10 stu-
dent projects. One half of the projects was used as a control group
applying agile processes. A detailed description of how the pro-
cesses differ and which practices are actually used was not been
provided. The outcome is that the hybrid approach produces more
lines of code and thus is more productive. Regarding quality, early
in development more defects are discovered with the hybrid pro-
cess, but the opposite trend can be found in later phases, which
confirms the findings in Middleton (2001).

Parnell-Klabo (2006) followed the introduction of lean and doc-
umented lessons learned from the introduction. The major obsta-
cles in moving from agile are to obtain open office space to
locate teams together, gain executive support, and training and
informing people to reduce resistance of change. After successfully
changing with the help of training workshops and use of pilot pro-
jects positive results have been obtained. The lead-time for deliv-
ery has been decreased by 40–50%. Besides having training
workshops and pilots sitting together in open office-landscapes
and having good measures to quantify the benefits of improve-
ments are key.

2.2. Lean manufacturing and lean product development

Lean principles initially focused on the manufacturing and pro-
duction process and the elimination of waste within these pro-
cesses that does not contribute to the creation of customer value.
Morgan and Liker (2006) point out that today competitive advan-
tage cannot be achieved by lean manufacturing alone. In fact most
automotive companies have implemented the lean manufacturing
principles and the gap in performance between them is closing. In
consequence lean needs to be extended to lean product develop-
ment, not only focusing on the manufacturing/production process.
This trend is referred to as lean product development which re-
quires the integration of design, manufacturing, finance, human re-
source management, and purchasing for an overall product
(Morgan and Liker, 2006). Results of lean product development
are more interesting for software engineering than the pure man-
ufacturing part as the success of software development highly de-
pends on an integrative view as well (requirements, design and
architecture, motivated teams, etc.), and at the same time has a
strong product focus.

Morgan and Liker (2006) identified that inventory is influenced
by the following causes: batching (large hand-overs of, for exam-
ple, requirements), process and arrival variation, and unsynchro-
nized concurrent tasks. The causes also have a negative effect
on other wastes: batching leads to overproduction; process and
arrival variation leads to overproduction and waiting; and unsyn-
chronized tasks lead to waiting. Thus, quantifying inventory aids
in detecting the absence of lean principles and can be mapped
to root causes. As Morgan and Liker (2006) point out their list
of causes is not complete. Hence, it is important to identify the
causes for waste after detecting it (e.g., in form of inventories pil-
ing up).

Karlsson and Ahlströhm (2009) identified hinders and support-
ing factors when introducing lean production in a company in an
industrial study. The major hinders are: (1) it is not easy to create
a cross-functional focus as people feel loyal to their function; (2)
simultaneous engineering is challenging when coming from
sequential work-processes; (3) there are difficulties in coordinat-
ing projects as people have problems understanding other work-

1276 K. Petersen, C. Wohlin / The Journal of Systems and Software 83 (2010) 1275–1287



Download	English	Version:

https://daneshyari.com/en/article/462102

Download	Persian	Version:

https://daneshyari.com/article/462102

Daneshyari.com

https://daneshyari.com/en/article/462102
https://daneshyari.com/article/462102
https://daneshyari.com/

