
Measuring design complexity of semantic web ontologies

Hongyu Zhang a,*, Yuan-Fang Li b, Hee Beng Kuan Tan c

a School of Software, Tsinghua University, Beijing 100084, China
b School of ITEE, The University of Queensland, Brisbane, Australia
c School of EEE, Nanyang Technological University, Singapore 639798, Singapore

a r t i c l e i n f o

Article history:
Received 24 January 2009
Received in revised form 19 November 2009
Accepted 19 November 2009
Available online 1 December 2009

Index Terms:
Design complexity
Ontology
OWL
Ontology metrics
Software metrics

a b s t r a c t

Ontology languages such as OWL are being widely used as the Semantic Web movement gains momen-
tum. With the proliferation of the Semantic Web, more and more large-scale ontologies are being devel-
oped in real-world applications to represent and integrate knowledge and data. There is an increasing
need for measuring the complexity of these ontologies in order for people to better understand, maintain,
reuse and integrate them. In this paper, inspired by the concept of software metrics, we propose a suite of
ontology metrics, at both the ontology-level and class-level, to measure the design complexity of ontol-
ogies. The proposed metrics are analytically evaluated against Weyuker’s criteria. We have also per-
formed empirical analysis on public domain ontologies to show the characteristics and usefulness of
the metrics. We point out possible applications of the proposed metrics to ontology quality control.
We believe that the proposed metric suite is useful for managing ontology development projects.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Semantic Web (Berners-Lee et al., 2001) is an envisioned
extension of the current World Wide Web in which data is given
well defined meaning so that software agents can autonomously
process the data. It is also widely believed that Semantic Web
ontologies provide a solution to the knowledge management and
integration challenges (Searls, 2005; Auer et al., 2008; Smith
et al., 2007; Ruttenberg et al., 2009). Ontology languages such as
RDF Schema (Brickley and Guha, 2004) and OWL (Horrocks et al.,
2003) provide essential vocabularies to describe domain knowl-
edge, the underlying common model for data aggregation and
integration.

A great deal of efforts are being invested in applying Semantic
Web ontologies to create mutually agreeable and consistent vocab-
ularies to describe domain knowledge from disparate sources. For
example, the NCI Thesaurus Ontology1 developed and actively cu-
rated by the National Cancer Institute is such an OWL ontology. It
defines 60,000+ named classes, a roughly equal number of anony-
mous classes and 100,000+ connections (properties) from and to
these classes. This ontology covers information about nearly
10,000 cancers and 8000 therapies. More recently, as the result of
the Linked Data project2, a large number of inter-connected RDF

datasets, such as DBPedia3, DBLP4, FOAF5, US census data, etc., are
being generated and integrated. With more information being con-
verted to RDF/OWL and integrated, we believe that properly de-
signed OWL ontologies is essential to the effective management,
reuse and integration of these data.

As ontologies grow in size and number, it is important to be able
to measure their complexity quantitatively. It is well known that
‘‘You cannot control what you cannot measure” (DeMarco, 1986).
Quantitative measurement of complexity can help ontology devel-
opers and maintainers better understand the current status of the
ontology, therefore allowing them to better evaluate its design and
control its development process. Research on human cognition
shows that humans have limited capabilities in information pro-
cessing (e.g., Miller, 1956; Simon, 1974). Experiences from the soft-
ware engineering field also suggest that there are correlations
between software complexity and quality (such as reusability
and maintainability) (Li and Cheung, 1987; Wilde et al., 1993; Koru
and Tian, 2003; Zhang et al., 2007). We believe such correlation ex-
ists between ontology complexity and quality too – in general,
more complex ontologies tend to be more difficult for a human
to comprehend, therefore more difficult to be maintained and
reused.

In software engineering domain, the term software complexity
is often defined as ‘‘the difficulty of performing tasks such as cod-
ing, debugging, testing and modifying the software” (Zuse, 1991).

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.11.735

* Corresponding author. Tel.: +86 10 62773275.
E-mail addresses: hongyu@tsinghua.edu.cn (H. Zhang), liyf@itee.uq.edu.au (Y.-F.

Li), ibktan@ntu.edu.sg (H.B.K. Tan).
1 http://www.cancer.gov/cancertopics/terminologyresources.
2 http://linkeddata.org.

3 http://dbpedia.org/.
4 http://www.informatik.uni-trier.de/ley/db/.
5 http://www.foaf-project.org.

The Journal of Systems and Software 83 (2010) 803–814

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.11.735
mailto:hongyu@tsinghua.edu.cn
mailto:liyf@itee.uq.edu.au
mailto:ibktan@ntu.edu.sg
http://www.cancer.gov/cancertopics/terminologyresources
http://linkeddata.org
http://dbpedia.org/
http://www.informatik.uni-trier.de/ley/db/
http://www.foaf-project.org
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


Software metrics (Fenton and Pfleeger, 1998) are designed to quan-
tify software products and processes. In the same spirit, we define
ontology design complexity as the difficulty of performing tasks
such as developing, reusing and modifying the ontology. This paper
addresses the increasing needs for measuring the complexity of
ontology designs by utilizing the concepts of software metrics.

We consider ontology complexity as a profile multidimensional
construct (Law et al., 1998), which is formed as various combina-
tions of dimensional characteristics and cannot be measured di-
rectly using a single metric. Therefore, we propose a suite of
metrics (at both the ontology-level and class-level) to measure dif-
ferent aspects of the design complexity of ontologies. Together,
these metrics help us gain a more complete understanding of
ontology complexity.

Weyuker’s criteria (Weyuker, 1988) is a set of properties for
evaluating software metrics. We analyze the applicability of Weyu-
ker’s criteria in the context of ontology and analytically evaluate
our proposed metrics against them.

We have also collected real-world ontologies from public do-
mains to show the characteristics of the proposed metrics and to
evaluate the usefulness of the metrics. By doing so, we seek to
demonstrate the level of rigor required in the development of use-
ful ontology metrics. An automated tool based on the Protégé-OWL
API6 has been developed to facilitate metric computation. We also
point out how the proposed metrics can be applied to ontology qual-
ity control. Our proposed metrics are theoretically and empirically
sound, are capable of revealing the internal structure of ontologies,
and are useful for ontology engineering practices.

The rest of the paper is organized as follows: in Section 2 we
introduce the background on complexity measures and related
work. Section 3 introduces the problem of evaluating ontology
complexity and formally defines the graphic-centric representa-
tion of OWL ontologies, for the discussion of complexity metrics.
In Section 4, we describe our proposed metric suite. Sections 5
and 6 give analytical evaluation and empirical evaluation of the
metrics, respectively. Section 7 discusses how the proposed met-
rics can be applied to ontology development practices. Finally, in
Section 8 we conclude the paper and suggest future work
directions.

2. Background and related work

Complexity has been a subject of considerable research. In cog-
nitive psychology, a convenient metaphor treats human cognition
as a computer-like information processor (Lindsay and Norman,
1977). Both of them involve similar concepts such as input/output,
memory, processing power, and critical resources.7 Like an infor-
mation processor, it is believed that humans’ problem solving and
other complex cognitive processes have limited capabilities, which
restrict the understanding and development of complex structures.
For example, the seminal works on 7� 2 limits (Miller, 1956) and
the size of a memory chunk (Simon, 1974) reveal that a human
can only cope with limited information at a time via short-term
memory, independent of information content. It is also discovered
that the difficulty of a task can be measured by the number of cog-
nitive resources required to perform the task (Sheridan, 1980).

In software engineering domain, researchers and engineers at-
tempt to quantitatively understand the complexity of the software
undertaken and to find the relationships between the complexity
and the difficulty of development/maintenance task. Many soft-
ware complexity metrics have been proposed over the years.

Examples include cyclomatic complexity (McCabe, 1976), coupling
metrics (Fenton and Melton, 1990) and the CK object-oriented
design metrics (Chidamber and Kemerer, 1994). Many researchers
have shown that complexity measures can be early indicators of
software quality. For example, empirical evidence supporting the
role of object-oriented metrics, especially the CK metrics, in deter-
mining software defects was provided in (Basili et al., 1996;
Subramanyam and Krishnan, 2003).

An ontology is a specification of a conceptualization (Gruber,
1993), which can capture reusable knowledge in a domain. In soft-
ware engineering area, object-oriented design also involves the
conceptualization of domain knowledge, producing deliverables
such as class diagrams. It has been shown that object-oriented
modeling languages can be grounded on ontological theory (Op-
dahl and Henderson-Sellers, 2001). There is much similarity be-
tween object-oriented design and ontology development,
suggesting that we may borrow the principles and methods from
software metrics research to design ontology metrics. However,
we cannot apply the metrics originally designed for software com-
plexity to ontology without adaptation. Many software complexity
metrics are based on program control flow or the number of meth-
ods. For example, three of the six CK metrics involves information
about methods, which are not applicable to ontology. Therefore it
is necessary to design a new suite of metrics for measuring com-
plexity of ontologies.

In recent years, various metrics for measuring ontologies were
proposed. For example, Yao et al. suggested three metrics (Yao
et al., 2005) (namely the number of root classes, the number of leaf
class, and the average depth of inheritance tree) to measure the
cohesiveness of an ontology. Kang et al. (2004) proposed an entro-
py-based metric for measuring the structural complexity of an
ontology represented as UML diagram. These efforts only focus
on one or two aspects of structural complexity and lack sound the-
oretical or empirical validations.

Some researchers also proposed integrated frameworks for
ontology measurement. For example, Gangemi et al. (2006) pro-
posed a meta-ontology O2 that characterizes ontologies as semiotic
objects. Based on this ontology they identified three types of mea-
sures for ontology evaluation: structural measures, functional
measures and usability-profiling measures. A large number of po-
tential metrics were proposed as well. Some of these metrics can-
not be automatically calculated, limiting their utility. It also did not
provide an empirical analysis for the metrics.

In Wang et al. (2006), a large number (�1300) of OWL ontolo-
gies were collected and statistically analyzed. The main focus of
that work is ontology expressivity (e.g., to which OWL species –
Lite, DL or Full – an ontology belongs) and consistency characteris-
tics. Besides expressivity, an analysis on the shape of ontology class
hierarchy (a graph of subsumptions) was also presented. The
authors compared the morphological changes between the classi-
fied and inferred (as in OWL reasoning) versions of a class hierar-
chy and suggested that it may be useful to determine which
classes are over- or under-modeled. Their work on graph morphol-
ogy of class hierarchies is similar to the intention of our tree impu-
rity TIP metric that will be presented in Section 4.

Vrandečić and Sure (2007) proposed guidelines for creating
ontology metrics based on the notions of ‘‘normalization”. Their
work laid out a set of principles for designing stable, semantic-
aware metrics. They proposed five normalization steps, namely:
(i) name anonymous classes, (ii) name anonymous individuals,
(iii) materialize the subsumption hierarchy and unify names, (iv)
propagate instances to deepest possible class or property within
the hierarchy, and (v) normalize properties. The normalization pro-
cess attempts to transform the ontology into a semantically-equiv-
alent form to facilitate the creation of ‘‘semantic-aware” metrics.
As we stated previously, the objective of our research is to measure

6 http://protege.stanford.edu/overview/protege-owl.html.
7 We should note that although we use this metaphor, we are not saying that

human’s brain functions like a Von Neumann computer.

804 H. Zhang et al. / The Journal of Systems and Software 83 (2010) 803–814

http://protege.stanford.edu/overview/protege-owl.html


Download	English	Version:

https://daneshyari.com/en/article/462121

Download	Persian	Version:

https://daneshyari.com/article/462121

Daneshyari.com

https://daneshyari.com/en/article/462121
https://daneshyari.com/article/462121
https://daneshyari.com/

