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Abstract

In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equations

f (k) + Ak−1f (k−1) + · · · + A0f = 0

when most coefficients in the above equations have the same order with each other, and obtain some results which improve
previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential
equations, Kodai Math. J. 19 (1996) 378–387] and Z.-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation
f ′′ + e−zf ′ + Q(z)f = 0, Sci. China Ser. A 31 (2001) 775–784 (in Chinese); Z.-X. Chen, On the hyper order of solutions of
higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501–508 (in Chinese); Z.-X. Chen, On the growth of
solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52–60 (in Chinese); Z.-X. Chen,
C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42
(2000) 119–133].
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1. Introduction and results

We shall assume that reader is familiar with the fundamental results and the standard notations of the Nevanlinna’s
value distribution theory of meromorphic functions (see e.g. [11,15]). In addition, we will use the notation σ(f ) to
denote the order of growth of entire function f (z), τ(f ) to denote the type of f (z) with σ(f ) = σ , is defined to be

τ(f ) = lim
r→∞

logM(r,f )

rσ
.
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We use σ2(f ) to denote the hyper order of f (z), is defined to be (see [18])

σ2(f ) = lim
r→∞

log logT (r, f )

log r
.

We use mE to denote the linear measure of a set E ⊂ (0,+∞) and use mlE to denote the logarithmic measure of
a set E ⊂ [1,+∞). If P(z) is a polynomial, we use the notation degP to denote the degree of P(z).

For second order linear differential equations

f ′′ + B(z)f ′ + A(z)f = 0, (1.1)

many authors have investigated the growth of solutions of (1.1), where A(z) �≡ 0 and B(z) are entire functions of finite
order. It is well known that if either σ(B) < σ(A) or σ(A) < σ(B) � 1/2, then every solution f �≡ 0 of (1.1) is of
infinite order (see [9,13]). For the case σ(A) < σ(B) and σ(B) > 1/2, many authors have studied the problem. In
2000, I. Laine and P.C. Wu proved the following result.

Theorem A. (See [16].) Suppose that σ(A) < σ(B) < ∞ and that T (r,B) ∼ logM(r,B) as r → ∞ outside a set of
finite logarithmic measure. Then every non-constant solution f of (1.1) is of infinite order.

Thus a natural question is: what condition on A(z),B(z) when σ(A) = σ(B) will guarantee that every solution
f �≡ 0 of (1.1) has infinite order? For second order linear differential equations,

f ′′ + h1e
P (z)f ′ + h0e

Q(z)f = 0, (1.2)

in 1996, K.H. Kwon investigated the growth of the solutions of (1.2) for the case degP = degQ and obtained the
following result.

Theorem B. (See [14].) Let P(z) = anz
n + · · ·, Q(z) = bnz

n + · · · (anbn �= 0) be non-constant polynomials, h1(z)

and h0(z) �≡ 0 be entire functions with σ(hj ) < n (j = 0,1), if argan �= argbn or an = cbn (0 < c < 1), then every
solution f �≡ 0 of (1.2) has infinite order with σ2(f ) � n.

In 2001, Z.-X. Chen investigated the problem and proved the following theorem.

Theorem C. (See [2].) Let Aj(z) �≡ 0 (j = 0,1) be entire functions with σ(Aj ) < 1, a, b be complex numbers such
that ab �= 0 and a = cb (c > 1). Then every solution f �≡ 0 of the equation

f ′′ + A1(z)e
azf ′ + A0(z)e

bzf = 0 (1.3)

has infinite order.

Combining Theorems B and C, we obtain that if ab �= 0 and a �= b, then every solution f �≡ 0 of (1.3) has infinite
order. Can we get the similar result in higher order linear differential equations which has the same form as (1.3)? The
following Corollary 3 gives the affirmative answer.

For higher order linear differential equations

f (k) + Ak−1f
(k−1) + · · · + A0f = 0, (1.4)

Z.-X. Chen obtained the following theorems.

Theorem D. (See [6].) Let Aj(z) (j = 0, . . . , k − 1) be entire functions such that

max
{
σ(Aj ), j = 1, . . . , k − 1

}
< σ(A0) < +∞.

Then every solution f �≡ 0 of (1.4) satisfies σ2(f ) = σ(A0).

Theorem E. (See [3].) Suppose that aj (j = 0, . . . , k − 1) are complex numbers. There exist as and al such that s < l,
as = dse

iϕ , al = −dle
iϕ , ds > 0, dl > 0, and for j �= s, l, aj = dj e

iϕ (dj � 0) or aj = −dj e
iϕ , max{dj | j �= s, l} =

d < min{ds, dl}. If Aj = hj (z)e
aj z, where hj are polynomials, hshl �≡ 0, then every transcendental solution f of (1.4)

satisfies σ(f ) = ∞ and σ2(f ) = 1.
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