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Abstract

We shall present a couple of norm inequalities which will much improve the sharp triangle inequality
with n elements and its reverse inequality in a Banach space shown recently by the last three authors.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and results

The triangle inequality is one of the most fundamental inequalities in analysis and have been
treated by many authors (e.g., [1-3,8-10], etc.). Recently Kato, Saito and Tamura [5] showed the
following sharp triangle inequality and its reverse inequality with n elements in a Banach space.

Theorem A. (See [5].) For all nonzero elements x1, x3, ..., X, in a Banach space X,
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As the case n = 2 we have the following.
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Theorem B. For all nonzero elements x, y in a Banach space X with || x|| = ||y],
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The first inequality with two elements (3) was given earlier in Hudzik and Landes [4] (see
Lemma 3 below); the inequalities (3) and (4) are also found in a recent paper of Maligranda [7],
while the above Theorem A was presented in [5] independently to treat the uniform non-£7 -ness
of Banach spaces (cf. [5,6]).

In the present paper we shall show the following inequalities which are sharper than the above
inequalities.

Theorem 1. For all nonzero elements x1, ..., x, in a Banach space X, n > 2,
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where xl,xz,...,x,’; are the rearrangement of xi,X2,...,X, satisfying ||x]| = x5 =

2 lxgll, and x5 = x5, =0.

As the case n =2 Theorem 1 includes Theorem B. To see explicitly that Theorem 1 refines
Theorem A we reformulate Theorem 1 as follows.

Theorem 1a. For all nonzero elements x1, ..., x, in a Banach space X, n > 3,
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