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Abstract

We shall present a couple of norm inequalities which will much improve the sharp triangle inequality
with n elements and its reverse inequality in a Banach space shown recently by the last three authors.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and results

The triangle inequality is one of the most fundamental inequalities in analysis and have been
treated by many authors (e.g., [1–3,8–10], etc.). Recently Kato, Saito and Tamura [5] showed the
following sharp triangle inequality and its reverse inequality with n elements in a Banach space.

Theorem A. (See [5].) For all nonzero elements x1, x2, . . . , xn in a Banach space X,
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As the case n = 2 we have the following.

Theorem B. For all nonzero elements x, y in a Banach space X with ‖x‖ � ‖y‖,
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The first inequality with two elements (3) was given earlier in Hudzik and Landes [4] (see
Lemma 3 below); the inequalities (3) and (4) are also found in a recent paper of Maligranda [7],
while the above Theorem A was presented in [5] independently to treat the uniform non-�n

1-ness
of Banach spaces (cf. [5,6]).

In the present paper we shall show the following inequalities which are sharper than the above
inequalities.
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where x∗
1 , x∗

2 , . . . , x∗
n are the rearrangement of x1, x2, . . . , xn satisfying ‖x∗

1‖ � ‖x∗
2‖ �
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As the case n = 2 Theorem 1 includes Theorem B. To see explicitly that Theorem 1 refines
Theorem A we reformulate Theorem 1 as follows.

Theorem 1a. For all nonzero elements x1, . . . , xn in a Banach space X, n � 3,∥∥∥∥∥
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