
Using aspect orientation in legacy environments for reverse engineering using
dynamic analysis—An industrial experience report q

Bram Adams a,*, Kris De Schutter b, Andy Zaidman c, Serge Demeyer d, Herman Tromp a,
Wolfgang De Meuter b

a Ghent University, INTEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
b Vrije Universiteit Brussel, PROG, Pleinlaan 2, B-1050 Brussels, Belgium
c Delft University of Technology, SERG, Mekelweg 4, 2628CD Delft, The Netherlands
d University of Antwerp, LORE, Middelheimlaan 1, B-2020 Antwerp, Belgium

a r t i c l e i n f o

Article history:
Received 11 February 2007
Received in revised form 25 September
2008
Accepted 25 September 2008
Available online 8 October 2008

Keywords:
Dynamic analysis
Aspect-oriented programming
Industrial case study
Program comprehension C

a b s t r a c t

This paper reports on the challenges of using aspect-oriented programming (AOP) to aid in re-engineer-
ing a legacy C application. More specifically, we describe how AOP helps in the important reverse engi-
neering step which typically precedes a re-engineering effort. We first present a comparison of the
available AOP tools for legacy C code bases, and then argue on our choice of Aspicere, our own AOP imple-
mentation for C. Then, we report on Aspicere’s application in reverse engineering a legacy industrial soft-
ware system and we show how we apply a dynamic analysis to regain insight into the system. AOP is
used for instrumenting the system and for gathering the data. This approach works and is conceptually
very clean, but comes with a major quid pro quo: integration of AOP tools with the build system proves
an important issue. This leads to the question of how to reconcile the notion of modular reasoning within
traditional build systems with a programming paradigm which breaks this notion.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Legacy software is omnipresent: software that is still very use-
ful to an organisation – quite often even indispensable – but the
evolution of which becomes too great a burden Bennett (1995).
This burden can be caused by an increase in the complexity
brought on by the normal evolution of the system (Sneed, 2005;
Brodie and Stonebraker, 1995; Moise and Wong, 2003; Carver
and Montes de Oca, 1998; Demeyer et al., 2003; Lehman and
Belady, 1985). Classic symptoms include

� a lack of experienced developers or maintainers,
� a lack of up-to-date documentation, and
� technology that does not reflect the current (business)

environment.

To counter this phenomenon, a number of solutions to cope
with evolution have been proposed (Bennett, 1995; Sneed, 1996)
in the field of re-engineering (Chikofsky and Cross, 1990). When
applying these countermeasures in a reliable, economically sound
and swift fashion, the software engineer would ideally like to have
(1) a deep insight into the application in order to start his/her re-
engineering operation (Sneed, 2004; Carver and Montes de Oca,
1998; Lehman, 1998) and (2) a well-covering (set of) regression
test(s) to check whether the adaptations made are behavior-pre-
serving (Demeyer et al., 2003; Ducasse et al., 2006). In practice, leg-
acy applications seldom have up to date documentation (Moise
and Wong, 2003), nor do they have such a set of tests.

For all these reasons we are interested in the re-engineering of
legacy E-type systems (software systems that solve a problem or
implement a computer application in the real world (Lehman,
1996)). Recent research (Mens and Tourwé, 2008; Colyer and
Clement, 2004; Lämmel and De Schutter, 2005) suggests that as-
pect-oriented programming (AOP) (Kiczales et al., 1997) plays an
important role in this effort as it provides a modularised way to
change the existing behaviour of a system without having to
destructively modify that system’s source code in any way. The
modularity provides us with opportunities for re-engineering,
while the non-invasiveness takes care of some of the psychological
concerns associated with modifying business-critical source code.

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.09.031

q This article is an extension to our earlier paper Regaining Lost Knowledge through
Dynamic Analysis and Aspect Orientation, published in the proceedings of the
Conference on Software Maintenance and Re-engineering (CSMR’06) (Zaidman
et al., 2006).

* Corresponding author. Tel.: +32 92643318; fax: +32 92643593.
E-mail addresses: Bram.Adams@ieee.org (B. Adams), kdeschut@vub.ac.be (K. De

Schutter), a.e.zaidman@tudelft.nl (A. Zaidman), Serge.Demeyer@ua.ac.be (S.
Demeyer), Herman.Tromp@ugent.be (H. Tromp), wdmeuter@vub.ac.be (W. De
Meuter).

The Journal of Systems and Software 82 (2009) 668–684

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:Bram.Adams@ieee.org
mailto:kdeschut@vub.ac.be
mailto:a.e.zaidman@tudelft.nl
mailto:Serge.Demeyer@ua.ac.be
mailto:Herman.Tromp@ugent.be
mailto:wdmeuter@vub.ac.be
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


We have been looking at applying AOP in forward engineering
(Lämmel and De Schutter, 2005; Schutter and Adams, 2007; De
Schutter, 2006; Adams and Schutter, 2007), as have others (Brunt-
ink et al., 2007; Bruntink et al., 2005; Mens and Tourwé, 2008),
with success. Different from these, this paper takes a first look at
an opportunity for AOP in a reverse engineering setting. Reverse
engineering is the essential first step in the re-engineering process,
and has been reported to take up to 60% of the required effort (Cor-
bi, 1990).

As part of our research in the ARRIBA1 project, our focus is on
industrial legacy systems. Considering this, we choose to use dy-
namic analysis for our reverse engineering process. This choice is
instigated by the fact that dynamic analysis allows us to follow a
goal-oriented strategy, i.e., it lets us analyze only those parts of the
system that we are really interested in (Zaidman, 2006). This goal-
oriented strategy is certainly warranted considering the scale of typ-
ical legacy applications. Furthermore, it puts us in the position to re-
port on the benefits of using dynamic analysis in a large-scale
industrial legacy setting, of which reports are scarce (e.g., Eisenbarth
et al., 2003; Callo Arias et al., in press). In order to enable this dy-
namic analysis, we introduce a simple tracing aspect into an indus-
trial system. Given that we only need to collect a representative
trace of the running application in order for the dynamic analysis
to work, we could also have opted for dedicated tools such as
DTRACE (Cantrill et al., 2004) or ATOM (Srivastava and Eustace,
1994). There are two reasons we do not do this. One is that we are
looking at AOP as a tool in the entire re-engineering chain and not
limited to a particular reverse engineering technique. As proposed
by De Roover et al. (2006), aspects can generate reverse-engineering
results in such a way that re-engineering aspects can exploit these
results to steer their re-engineering tasks. In this respect AOP is more
interesting as it is more generally applicable than the aforemen-
tioned tools. The second reason is that we also need to consider
how to get our aspects applied in real-life systems. As this paper
shows, even for something as simple as a tracing aspect, this is not
trivial. Indeed, as the prototypical example of an extremely scattered
aspect, a tracing aspect actually provides us with something of a
stress test with respect to the support of aspects in the legacy
system.

The experiment reported on in this paper is therefore on a mid-
size real-life system which has accumulated a mix of Kernighan &
Ritchie (K&R) Kernighan and Ritchie (1978) as well as ANSI-C style
code. This has an impact on our choice of AOP tool, which this pa-
per will also take into careful consideration.

In short, the contributions of this paper are

� a comprehensive overview of AOP tools for the C programming
language,

� the introduction of a new AOP tool which fits our re-engineering
goals,

� the application of a dynamic analysis on an industrial legacy
application,

� a discussion of some of the problems found when applying AOP
in a legacy setting.

The structure of the remainder of this paper is as follows: Sec-
tion 2 explores the possible AOP tools for legacy C systems. As
we will see there is none that fits the bill and so Section 3 intro-
duces a tool of our own which has been created according to our
re-engineering goals. Next, Section 4 describes an actual applica-
tion of AOP in an industrial environment by showcasing a dynamic
analysis approach; we present the actual experiment, including the

aspect we apply, the results we get from the analysis, and the val-
idation of those results with the system’s developers. Section 5
then discusses the problems encountered while trying to apply
AOP to this system. Section 6 describes the threats to validity. Sec-
tion 7 describes the related work, followed by Section 8 which
rounds up the discussion with our conclusions.

2. AOP tools for legacy C applications

As discussed by Mens and Tourwé (2008), aspect extraction and
evolution are two crucial activities when re-engineering a system
using aspects. Failure or success of AOP for re-engineering depends
to a large extent on sufficient aspect language support. Without
this, the re-engineered system risks becoming unmaintainable
and even less manageable than the original system.

This section first provides a brief introduction on AOP, before
narrowing the focus to requirements for aspect languages for leg-
acy systems. We then discuss the aspect languages for C which ex-
isted at the time of starting our research. Finally, we compare the
aspect languages.

2.1. Aspect-oriented programming

Aspect-oriented programming (AOP) modularises so-called
‘‘crosscutting concerns” (CCCs) (Kiczales et al., 1997). When devel-
opers implement these concerns using traditional programming
language techniques, two undesired phenomena typically crop
up in the source code: scattering and tangling. The former corre-
sponds to implementation fragments of a concern (e.g., caching),
which occur at many places throughout the source code. Hence,
a change to the implementation of the concern requires changes
at many locations in the source code, which is tedious, error-prone
and hampers understandability. The situation is even worse, be-
cause at each location where a concern fragment occurs, it may
be tangled (mixed) with fragments of other concerns. This means
that programmers need to understand the interplay between mul-
tiple concerns before being able to modify the caching concern.
AOP deals with these undesirable program properties by extracting
crosscutting concerns in a new kind of modules: aspects.

To date, AspectJ is still the primary aspect language in existence,
both in research and in practice. This is an aspect language for Java
which has introduced the concepts of advice, pointcut, join points,
etc. An aspect is similar to a class or module, but can contain ‘‘ad-
vice”, which consists of a ‘‘pointcut”2 and an ‘‘advice body”. Accord-
ing to the most common school, the implementation of crosscutting
concerns is extracted from the ‘‘base code”. The latter corresponds to
the implementation of the main concerns, the so-called ‘‘dominant
decomposition” which forms the backbone of the whole system.
CCC implementation fragments are separated from the base code
and localised into (possibly) multiple advice bodies of an aspect.

Code separation is only one part of the effort required to resolve
scattering and tangling. One still needs to specify at which mo-
ments during the base program execution an advice body should
be invoked. Instead of embedding explicit calls to advice within
the base code, an advice is invoked automatically once a condition
(pointcut) is satisfied. This inversion of dependencies (Martin and
Nordberg, 2001) forms the core idea behind AOP. The moments
in time when advice can be triggered are called ‘‘join points”, as
this is where the main concern(s) and a CCC join each other. Estab-
lished kinds of join points are method calls and executions, vari-
able access and manipulation, etc. A pointcut can make use of
program structure, name patterns, dynamic program state, etc. to
describe the intended set of join points. It is, for example, possible

1 Architectural Resources for the Restructuring and Integration of Business Applications.
More info on this project at http://arriba.vub.ac.be/. 2 Sometimes abbreviated to ‘‘PCD”, for ‘‘pointcut designator”.

B. Adams et al. / The Journal of Systems and Software 82 (2009) 668–684 669

http://arriba.vub.ac.be/


Download	English	Version:

https://daneshyari.com/en/article/462249

Download	Persian	Version:

https://daneshyari.com/article/462249

Daneshyari.com

https://daneshyari.com/en/article/462249
https://daneshyari.com/article/462249
https://daneshyari.com/

