

Journal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

J. Math. Anal. Appl. 334 (2007) 950-953

www.elsevier.com/locate/jmaa

On existence of degenerate circle-preserving maps *

Guowu Yao

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People's Republic of China
Received 3 June 2005
Available online 23 January 2007
Submitted by P. Smith

Abstract

Recently, B. Li and Y. Wang proved that if $f:\mathbb{R}^n_\infty\to\mathbb{R}^n_\infty$ $(n\geqslant 2)$ is a circle-preserving map, then f is a Möbius transformation if and only if f is a non-degenerate map, where a map f is degenerate if the image $f(\mathbb{R}^n_\infty)$ is a circle. Furthermore, they conjectured that there should exist no degenerate map, or equivalently, f is a Möbius transformation if and only if f is a circle-preserving map. In this note, we construct a degenerate circle-preserving map to show that the conjecture is not true. © 2007 Elsevier Inc. All rights reserved.

Keywords: Möbius transformation; Circle-preserving map; Degenerate map

1. Introduction

As usual, let \mathbb{R}^n denote the *n*-dimensional Euclidean space and let $\mathbb{R}^n_{\infty} = \mathbb{R}^n \cup \{\infty\}$. We write \mathbb{H}^n for the *n*-dimensional hyperbolic space and restrict that a geodesic in \mathbb{H}^n has two endpoints on the ideal boundary $\partial \mathbb{H}^n$. In the sequel, we prescribe $n \ge 2$.

A map f of \mathbb{R}^n_∞ (\mathbb{R}^n , \mathbb{H}^n) into itself is called circle-preserving (line-preserving, geodesic-preserving) if the image of any circle (line, geodesic) under f is still a circle (line, geodesic). Moreover, the map f is called degenerate if its image $f(\mathbb{R}^n_\infty)$ ($f(\mathbb{R}^n)$, $f(\mathbb{H}^n)$) is a circle (line, geodesic), and otherwise, f is called non-degenerate.

A Möbius transformation acting on \mathbb{R}^n_{∞} is obviously circle-preserving. The situation about the converse intrigues many authors and some interesting results (cf. [1–3,5]) have been ob-

[★] The research was supported by the National Natural Science Foundation of China (Grant No. 10401036) and a Foundation for the Author of National Excellent Doctoral Dissertation (Grant No. 200518) of PR China.

E-mail address: gwyao@math.tsinghua.edu.cn.

tained. In a very recent article [4], Li and Wang refined the conditions for a circle-preserving (line-preserving, geodesic-preserving) map to be a(n) Möbius (affine, isometric) transformation, that is,

Theorem A. Suppose that $f: \mathbb{R}^n_{\infty} \to \mathbb{R}^n_{\infty}$ is a circle-preserving map. Then f is a Möbius transformation if and only if f is non-degenerate.

Theorem B. Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is a line-preserving map. Then f is an affine transformation if and only if f is non-degenerate.

Theorem C. Suppose that $f: \mathbb{H}^n \to \mathbb{H}^n$ is a geodesic-preserving map. Then f is a hyperbolic isometry if and only if f is non-degenerate.

A natural problem arises from Theorems A, B and C, i.e., does there exist a degenerate circle-preserving (line-preserving, geodesic-preserving) map? For the latter two cases in \mathbb{R}^n and \mathbb{H}^n , Li and Wang constructed certain degenerate line-preserving and geodesic-preserving maps, respectively. Meanwhile, they believed that there should exist no degenerate circle-preserving map on \mathbb{R}^n_∞ . More precisely, they proposed

Conjecture. Degenerate circle-preserving maps do not exist. Equivalently, f is a Möbius transformation if and only if f is a circle-preserving map.

The main aim of this paper is to construct a degenerate circle-preserving map to show that the above conjecture is not true. Since for a degenerate circle-preserving map f, the inverse images of every point in $f(\mathbb{R}^n_{\infty})$ are dense in \mathbb{R}^n_{∞} , f is necessarily nowhere continuous. However, certain real-analytic degenerate line-preserving (geodesic-preserving) maps exist! We will also give such examples since the degenerate maps given in [4] are not continuous at some points.

2. Construction of degenerate maps

Construction of degenerate circle-preserving map: We divide the construction of the required map into four steps.

Step 1. Define a map $g_1 : \mathbb{R}^n_{\infty} \to \mathbb{R}^1$ as follows:

$$g_1(x) = \begin{cases} \sum_{i=1}^n |x_i|, & x \in \mathbb{R}^n, \\ 0, & x = \infty, \end{cases}$$

where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n_{\infty}$

Step 2. Define an equivalence relation on \mathbb{R} : x and y in \mathbb{R} are equivalent if and only if $x - y \in \mathbb{Q}$. Given x in \mathbb{R} , let \tilde{x} denote the set of all elements $y \in \mathbb{R}$ equivalent to x. We denote by $\mathbb{R}_{\mathbb{Q}}$ the set of all equivalence classes \tilde{x} . We claim that the cardinality $\operatorname{card}(\mathbb{R}_{\mathbb{Q}})$ of $\mathbb{R}_{\mathbb{Q}}$ is \aleph instead of \aleph_0 . Suppose to the contrary, i.e., $\operatorname{card}(\mathbb{R}_{\mathbb{Q}})$ is \aleph_0 ; in other words, $\mathbb{R}_{\mathbb{Q}}$ is a countable set. Choose one representative element from every equivalence class \tilde{x} in $\mathbb{R}_{\mathbb{Q}}$ to form a subset W in \mathbb{R} . Whence, W is countable. On the other hand, we can assume that the rational numbers set $\mathbb{Q} = \{r_1, r_2, \ldots, r_k, \ldots\}$. Notice that

$$\mathbb{R}^1 = \bigcup_{k=1}^{\infty} (W + \{r_k\}).$$

Download English Version:

https://daneshyari.com/en/article/4622594

Download Persian Version:

https://daneshyari.com/article/4622594

<u>Daneshyari.com</u>