



J. Math. Anal. Appl. 334 (2007) 1426–1438



www.elsevier.com/locate/jmaa

# Fixed points of generalized e-concave (generalized e-convex) operators and their applications <sup>☆</sup>

## Zhao Zengqin\*, Du Xinsheng

College of Mathematics Sciences, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
Received 23 April 2006
Available online 26 February 2007
Submitted by B. Sims

#### Abstract

In this paper, we present the definitions of generalized e-concave operators and generalized e-convex operators, which are the generalizations of e-concave operators and e-convex operators, respectively. Without compactness or continuity assumption of generalized e-concave operators and generalized e-convex operators, we have proved the existence, uniqueness and monotone iterative techniques of their fixed points. Our results are even new to e-concave operators and e-convex operators. Finally, we apply the results to the singular boundary value problems for second order differential equations.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Generalized e-concave operator; Generalized e-convex operator; Fixed point; Two point boundary value problem; Increasing operator; Decreasing operator

#### 1. Introduction

[1] states the definitions and properties of e-concave operators and e-convex operators which have been investigated by Guo and Lakshmikantham in [2]. More research can be found in [3]. In this paper, we present the definitions of generalized e-concave operators and generalized e-convex operators, which are the generalizations of e-concave operators and e-convex operators, respectively. Without compactness or continuity assumption of generalized e-concave operators

E-mail address: zqzhao@qfnu.edu.cn (Z. Zhao).

<sup>&</sup>lt;sup>☆</sup> Research supported by the National Natural Science Foundation of China (10471075) and the Doctoral Program Foundation of Education Ministry of China (20050446001).

Corresponding author.

and generalized e-convex operators, we have proved the existence, uniqueness and monotone iterative techniques of their fixed points. As corollaries, we also obtain the existence of fixed points of e-concave operators and e-convex operators. Finally, we apply the results to the singular boundary value problems for second order differential equations, which improved the previous results.

Let E be a real Banach space, P be a cone of E and " $\leq$ " be the partial ordering defined by P,  $e \in P - \{\theta\}$  and

 $C_e = \{x \in E \mid \text{there exist positive numbers } \alpha, \beta \text{ such that } \alpha e \leqslant x \leqslant \beta e\}.$ 

Set

$$E_e = \{x \in E \mid \text{there exists } \lambda > 0 \text{ such that } -\lambda e \leq x \leq \lambda e\},\$$

and

$$||x||_e = \inf\{\lambda > 0 \mid -\lambda e \le x \le \lambda e\}, \quad \forall x \in E_e.$$

It is easy to see that  $E_e$  becomes a normed linear space under the norm  $\|.\|_e$ .  $\|.\|_e$  is called the e-norm of the element  $x \in E_e$ .

Recall that cone *P* is said to be normal if there exists a positive constant *N* such that  $\theta \le x \le y$  implies  $||x|| \le N||y||$ , the smallest *N* is called the normal constant of *P*.

#### **Definition 1.1.** Let $A: P \to P$ be an operator and $e > \theta$ . Suppose that

- (i)  $Ae \in C_e$ ,
- (ii) there exists a real number  $\eta = \eta(x, t) > 0$  such that

$$A(tx) \ge t(1+\eta)Ax, \quad \forall x \in C_e, \ 0 < t < 1. \tag{1.1}$$

Then A is called a generalized e-concave operator.

Similarly, if in the above definition, we replace (ii) by the following

(ii)' 
$$A(tx) \le (t(1+\eta))^{-1}Ax$$
,  $\forall x \in C_e$ ,  $0 < t < 1$ , (1.2)

then A is called a generalized e-convex operator.

#### **Remark 1.1.** (1.1) implies

$$A(\lambda x) \leqslant \lambda \left[ 1 + \eta \left( \lambda x, \frac{1}{\lambda} \right) \right]^{-1} Ax, \quad \forall x \in C_e, \ \lambda > 1;$$
 (1.3)

and (1.2) implies

$$A(\lambda x) \geqslant \lambda^{-1} \left[ 1 + \eta \left( \lambda x, \frac{1}{\lambda} \right) \right] Ax, \quad \forall x \in C_e, \ \lambda > 1.$$
 (1.4)

Conversely, (1.3) implies (1.1) and (1.4) implies (1.2).

#### **Remark 1.2.** If we replace the condition (i) in Definition 1.1 by the following

(i)' for any 
$$x \in P - \{\theta\}$$
,  $Ax \in C_{\theta}$ ,

then A is called an e-concave operator. Obviously, an e-concave operator is a generalized e-concave operator.

### Download English Version:

# https://daneshyari.com/en/article/4622626

Download Persian Version:

https://daneshyari.com/article/4622626

<u>Daneshyari.com</u>