
z

Synthesis of decentralized and concurrent adaptors for correctly assembling
distributed component-based systems q

Marco Autili a, Leonardo Mostarda c, Alfredo Navarra b, Massimo Tivoli a,*

a Dipartimento di Informatica, Università dell’Aquila, Via Coppito, I-67100 L’Aquila, Italy
b Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, I-06123 Perugia, Italy
c Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

a r t i c l e i n f o

Article history:
Received 14 February 2007
Received in revised form 1 April 2008
Accepted 4 April 2008
Available online 12 April 2008

Keywords:
Software architecture
Component-based software engineering
Component assembly
Component adaptation

a b s t r a c t

Building a distributed system from third-party components introduces a set of problems, mainly related
to compatibility and communication. Our existing approach to solve such problems is to build a central-
ized adaptor which restricts the system’s behavior to exhibit only deadlock-free and desired interactions.
However, in a distributed environment such an approach is not always suitable. In this paper, we show
how to automatically generate a distributed adaptor for a set of black-box components. First, by taking
into account a specification of the interaction behavior of each component, we synthesize a behavioral
model for a centralized glue adaptor. Second, from the synthesized adaptor model and a specification
of the desired behavior that must be enforced, we generate one local adaptor for each component. The
local adaptors cooperatively behave as the centralized one restricted with respect to the specified desired
interactions.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Reuse-based software engineering is becoming one of the main
development approaches for business and commercial systems.
Nowadays, a growing number of software systems are built as a
composition of reusable or COTS (Commercial-Off-The-Shelf) com-
ponents and CBSE is a reuse-based approach which addresses the
development of such systems.

In an ideal world, component-based systems are assembled by
simply connecting together compatible ready-to-use components,1

that jointly provide the desired functionalities. However, in the prac-
tice of software development it turns out that the constituent com-
ponents often do not perfectly fit together and adaptation is needed
to eliminate the resulting mismatches (Becker et al., 2006; Yakimo-
vich et al., 1999; Szyperski, 2004; Horwich, 1990; Yellin and Strom,
1997, 2002; Zaremski and Wing, 1995; Schmidt and Reussner, 2002;
Becker et al., 2004). In particular, considering third-party and black-
box components makes the problem worse since there is no way to
inspect the source code for possibly solving mismatches from inside.
In this setting, while assembling a distributed system from a set of

black-box components interacting by message passing, the specific
problem we want to face concerns how to automatically prevent
deadlocking and undesired (externally observable) interactions of
the resulting system. A widely used technique to deal with this prob-
lem is to use adaptors and interpose them among the components
that are being assembled to form the system. The intent of the
adaptors is to moderate the external communication of the compo-
nents in a way that the resulting system is deadlock-free and com-
plies with a desired behavior (i.e., desired sequences of messages
exchanged among the components).

Our previous approach (Inverardi and Tivoli, 2003) (imple-
mented in the previous version of our SYNTHESIS tool (Tivoli and
Autili, 2006)) is to build a centralized adaptor which restricts the
system’s behavior to exhibit only a set of deadlock-free or desired
interactions. By exploiting an abstract and partial specification of
the global behavior that must be enforced, SYNTHESIS automatically
builds such an adaptor. It mediates the interaction among the com-
ponents by allowing only the desired behavior specified by the
assembler (i.e., the SYNTHESIS user) and, simultaneously, avoiding
possible deadlocks.

In a distributed environment it is not always possible or conve-
nient to introduce a centralized adaptor. For example, existing dis-
tributed systems might not allow the introduction of an additional
component (i.e., the adaptor) which coordinates the information
flow in a centralized way. Moreover, the coordination of several
components might cause loss of information and bottlenecks,

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.04.006

q This paper is a revised and extended version of Autili et al. (2006) that has been
presented at EWSA2006.

* Corresponding author.
E-mail addresses: marco.autili@di.univaq.it (M. Autili), lmostard@doc.ic.ac.uk (L.

Mostarda), navarra@dipmat.unipg.it (A. Navarra), tivoli@di.univaq.it (M. Tivoli).
1 Hereafter the terms component and component instance are used interchangeably.

The Journal of Systems and Software 81 (2008) 2210–2236

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:marco.autili@di.univaq.it
mailto:lmostard@doc.ic.ac.uk
mailto:navarra@dipmat.unipg.it
mailto:tivoli@di.univaq.it
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


hence slowing down the response time of the centralized adaptor.
Conversely, building a distributed adaptor might extend the appli-
cability of the approach to large-scale contexts.

In this paper, we describe our novel approach to the automatic
generation of a distributed adaptor for a set of black-box compo-
nents. Given (i) a Labeled Transition System (LTS) (Keller, 1976)
specification of the interaction behavior (based on message pass-
ing2) of each component with its ‘‘expected environment”3 and (ii)
an LTS-based specification of the desired behavior that the system
to be composed must exhibit, our approach generates component lo-
cal adaptors (one for each component). These local adaptors suitably
communicate in order to avoid possible deadlocks and to enforce the
specified desired interaction behavior. They constitute the distrib-
uted adaptor for the given set of black-box components.

In Tivoli and Autili (2006) (and references therein), we have
shown how it is possible to automatically derive LTS behavioral
descriptions by assuming a partial specification of the system to
be assembled. In particular, we give a partial specification of the
interaction behavior of each component in the form of a basic Mes-
sage Sequence Chart (bMSC) and high-level MSC (hMSC) specification
(Uchitel et al., 2004; ITU Telecommunication Standardisation Sector,
1996). By applying our implementation of the algorithm described
in Uchitel et al. (2004), the partial specification of each component
is automatically translated into the corresponding LTS specification.
hMSC and bMSC specifications are useful as an input language, since
they are commonly used in software development practice. Thus,
LTSs can be regarded as an internal specification language.

Starting from the specification of the components’ interaction
behavior, our approach synthesizes a behavioral model (i.e., an
LTS) of a centralized glue adaptor. At this stage, the adaptor LTS is
built only for modeling, by interleaving, all the possible (externally
observable) interactions considering synchronization on common
actions, i.e., the send event for a message and the corresponding re-
ceive event. It models a dummy routing component and each mes-
sage it receives is forwarded strictly to the right component.

By taking into account the specification of the desired behavior
that the composed system must exhibit, our approach explores the
centralized glue adaptor model in order to find those states leading
to deadlocks or to undesired behaviors. This process is used to
automatically derive the actual code for the set of local adaptors
that implement the correct4 and distributed version of the central-
ized adaptor model. It is worth mentioning that the construction
of the centralized glue adaptor model is required to deal with dead-
locks in a fully-automatic way. Otherwise, in order to avoid the con-
struction of the centralized adaptor, we should make the stronger
assumption that the specification of the desired behavior itself en-
sures deadlock-freeness and it is consistent with respect to the cen-
tralized glue adaptor (i.e., the desired behavior can be enforced
against the glue adaptor).

The approach presented in this paper has various advantages
with respect to the one described in Tivoli and Autili (2006) and
Inverardi and Tivoli (2003) concerning the synthesis of centralized
adaptors. The most relevant ones are

� no centralized point of information flow exists;
� the degree of parallelism of the system without the adaptor is

maintained. Conversely, the approach in Tivoli and Autili
(2006) does not permit parallelism since the adaptor is central-
ized, single-threaded and the communication with it is
synchronous;

� all the domain-specific deployment constraints imposed on the
adaptor can be removed. In Tivoli and Autili (2006), we applied
the synthesis of centralized adaptors to COM/DCOM applica-
tions. In this domain, the centralized adaptor and the server
components had to be deployed on the same machine. Now,
the approach described in this paper allows one to deploy each
component (together with its local adaptor) on different
machines.

The SYNTHESIS tool has been extended accordingly in order to
enable also the distributed implementation of the generated
adaptor model. The distributed adaptor is implemented as a set
of EJB component wrappers (Autili et al., 2007). Each wrapper is
developed by using AspectJ that easily supports the wrapper tasks
of intercepting the component messages and correctly coordinat-
ing them. Note that AspectJ is only one possible implementation
choice.

2. Background notions

This section provides the reader with background concepts, def-
initions and assumptions needed for a full understanding of our
work. Actually, the discussion has been kept as light as possible
in order to give a good intuition to the reader without loosing
his/her attention. Detailed formalisms and definitions are then re-
ferred to Appendixes A and B.

In our context, a distributed system is a network of interacting
black-box and ready-to-use components C = {C1, . . . , Cn} that can
be simultaneously executed. Components communicate by mes-
sage passing. Messages are exchanged by means of communication
channels, performing precise communication protocols that spec-
ify (in some formalism) the set of all possible message sequences.
Note that, dealing with black-box components, communication
protocols specify external communication among components by
the relatively simple nature of the message exchange (and hence
by means of send and receive events) rather than internal compu-
tation within a component. Generally speaking, communication
channels can be

� asynchronous – no synchronization points exist and message
passing never blocks the sender. This implies a potentially
unbounded buffer; in practice, a bounded buffer is used and
the sender will block when the buffer is full. In this way, a higher
degree of parallelism can be achieved because (possibly) the
sender never has to wait.

� synchronous – message passing uses no buffer and, due to syn-
chronization points, both senders and receivers can block. The
term rendezvous is often used to evoke the image of two pro-
cesses that have to meet at a specific synchronization point.

For the purposes of this work, we model component interaction
by assuming that the components to be assembled communicate
by means of synchronous communication channels. This is not a
limitation since, in practice, by introducing a finite buffer compo-
nent to decouple message passing, we can simulate a bounded
asynchronous system with a synchronous one (Uchitel et al.,
2004; Milner, 1989). Obviously, in this case, there is the necessity
of explicitly programming the needed buffers by exploiting the na-
tive primitives (of the programming language being used) that are
provided to support the synchronous communication. It is well
known that reasoning (e.g., deadlock prevention) with the presence
of unbounded buffers is undecidable (Brand and Zafiropulo, 1983).
From a practical point of view, this motivates the reasonable
restriction to consider only synchronous systems (or, possibly,
bounded asynchronous ones).

2 Message exchanging can be used for delivering packages of data or for calling
remote procedures.

3 Dealing with third-party and ready-to-use components, the expected environ-
ment is actualized at assembly time by the set of all the other components that are
being assembled to form the system.

4 With respect to deadlock-freeness and the specified desired behavior.

M. Autili et al. / The Journal of Systems and Software 81 (2008) 2210–2236 2211



Download	English	Version:

https://daneshyari.com/en/article/462263

Download	Persian	Version:

https://daneshyari.com/article/462263

Daneshyari.com

https://daneshyari.com/en/article/462263
https://daneshyari.com/article/462263
https://daneshyari.com/

