

ANALYSIS AND APPLICATIONS

Journal of

MATHEMATICAL

www.elsevier.com/locate/jmaa

J. Math. Anal. Appl. 323 (2006) 1417-1429

Asplund sets, differentiability and subdifferentiability of functions in Banach spaces *

Xianfu Wang

Department of Mathematics & Statistics, University of British Columbia, Okanagan, 3333 University Way, Kelowna, BC VIV 1V7, Canada

Received 13 October 2005 Available online 28 December 2005 Submitted by William F. Ames

Abstract

We show that Asplund sets are effective tools to study differentiability of Lipschitz functions, and ε -subdifferentiability of lower semicontinuous functions on general Banach spaces. If a locally Lipschitz function defined on an Asplund generated space $X = \overline{TY}$ has a minimal Clarke subdifferential mapping, then it is $T\mathbb{B}_Y$ -uniformly strictly differentiable on a dense G_δ subset of X. Examples are given of locally Lipschitz functions that are $T\mathbb{B}_Y$ -uniformly strictly differentiable everywhere, but nowhere Fréchet differentiable.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Asplund set; Asplund generated space; $T\mathbb{B}_{Y}$ -uniformly strict differentiability; M-differentiability and subdifferentiability

1. Introduction

This note is concerned with *Asplund sets* and its applications in differentiability of Lipschitz functions and subdifferentiability of lower semicontinuous functions on general Banach spaces. Roughly speaking, we show that if a set is Asplund in a Banach space, then Lipschitz functions are partially differentiable along the set densely; and for every $\varepsilon > 0$ lower semicontinuous functions are partially ε -subdifferentiable along the set densely in their domains. Our key tools are the characterization of Asplund sets by Fitzpatrick [4, p. 122], and the interpolation theorem of

Research supported by NSERC.

E-mail address: shawn.wang@ubc.ca.

Asplund generated spaces by Stegall [9, pp. 22–26]. Sova's example [12] allows us to demonstrate that such a partial differentiability is still far away from the Fréchet differentiability in non-Asplund spaces. Our results are in the same spirit as the partial subdifferentiability results for lower semicontinuous functions given by Borwein, Treiman, and Zhu [1], in which they assume a Banach space X with a Banach subspace Y has a $Y\beta$ -smooth norm. The Asplundity of a set in general Banach spaces turns out to be a surprisingly applicable concept in studying the existence of derivative and subderivatives of functions.

2. Basic properties of Asplund sets

Let X be a Banach space and (X^*, weak^*) be the dual of X with weak* topology. We use \mathbb{B}_X and \mathbb{B}_{X^*} to denote the closed unit balls in X and X^* , respectively. For a bounded absolutely convex set $M \subset X$, according to Fitzpatrick [4, p. 122], it is called *Asplund* if each bounded subset K of X^* is M-dentable. That is, for every $\varepsilon > 0$ there exists $0 \neq e \in X$ and v > 0 such that the slice

$$S(K, e, \nu) := \{ x^* \in K : \langle x^*, e \rangle > \sup \langle K, e \rangle - \nu \},$$

has M-diameter

$$\operatorname{diam}_{M} S(K, e, \nu) := \sup \{ \langle x^{*} - y^{*}, h \rangle : x^{*}, y^{*} \in S(K, e, \nu), h \in M \} < \varepsilon.$$

Finite sets and weakly compact sets (so compact sets) of any Banach spaces are Asplund sets. For a Banach space X, \mathbb{B}_X is an Asplund set if and only if X is an Asplund space by Theorem 1.1.1 [9]. Every bounded subset of an Asplund space is an Asplund set. In particular, a set $M \subset X$ is Asplund if and only if for every separable subspace $Z \subset X$, whenever $Z \cap M \neq \emptyset$, the set $Z \cap M$ is Asplund in Z. This means that a set being Asplund is separably determined. Many other characterizations of Asplund sets may be found in [4,9,18].

Let $U \subset X$ be nonempty open. A function $f: U \to \mathbb{R}$ is called locally Lipschitz if given $x \in U$, $\exists L(x) > 0$, $\delta(x) > 0$ such that

$$|f(y) - f(z)| \le L||y - z||$$
 for $y, z \in \mathbb{B}(x, \delta)$,

where $\mathbb{B}(x, \delta) := \{y \in X : \|y - x\| < \delta\}$. In order to study differentiability of locally Lipschitz functions, we need the *Clarke subdifferential* [5] defined by

$$\partial_c f(x) := \left\{ x^* : \left\langle x^*, v \right\rangle \leqslant f^{\circ}(x; v) \text{ for all } v \in X \right\}, \tag{1}$$

where

$$f^{\circ}(x; v) := \limsup_{y \to x, t \downarrow 0} \frac{f(y + tv) - f(y)}{t}.$$

Such a function f is M-differentiable at $x \in U$ [4, p. 117] if there exists $x^* \in \partial_c f(x)$ satisfies

$$\lim_{t \to 0} \sup_{h \in M} \left| \frac{f(x+th) - f(x)}{t} - \left\langle x^*, h \right\rangle \right| = 0,$$

and we write $x^* \in f_M'(x)$. When $M := \mathbb{B}_X$, we say that f is *Fréchet differentiable*. Asplund set is closely tied to the differentiability as the following illustrates:

Proposition 1. Let X be a Banach space, $M \subset X$ be bounded. If M is non-Asplund, then there exists a norm $\|\cdot\|$ on X which is nowhere M-differentiable.

Download English Version:

https://daneshyari.com/en/article/4622812

Download Persian Version:

https://daneshyari.com/article/4622812

<u>Daneshyari.com</u>