Available online at www.sciencedirect.com

ScienceDirect

&%) The Journal of

A2

Systems and
Software

ELSEVIER The Journal of Systems and Software 81 (2008) 395413

www.elsevier.com/locate/jss

Software Engineering Using RATionale

Janet E. Burge **, David C. Brown °

* Department of Computer Science & Systems Analysis, Miami University, Oxford, OH, USA
> Computer Science Department, WPI, Worcester, MA, USA

Received 13 October 2006; received in revised form 15 April 2007; accepted 22 May 2007
Available online 25 May 2007

Abstract

Many decisions have to be made when developing a software system and a successful outcome depends on how well thought out these
decisions were. One way that the decisions made, and alternatives considered, can be captured is in the rationale for the system. The
rationale goes beyond standard documentation by capturing the developers’ intent and all alternatives considered rather than only those
selected. While the potential usefulness of this information is seldom questioned, it typically is not captured in practice. We feel that the
key to motivating capture is to provide compelling uses and tool support integrated with the development environment. Here we describe
the Software Engineering Using RATionale system which inferences over the rationale to evaluate decision alternatives and perform

impact assessment when requirements, development criteria, and assumptions change.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Assumptions; Inference; Rationale; Requirements; Software maintenance

1. Introduction

Any system development effort, software or otherwise,
requires making a series of decisions in order to determine
what to build and then how to build it. The success of the
system is dependent on the results of these decisions. How
good were the alternatives chosen? Were alternatives
selected for the right reasons? Did the developers investi-
gate more than one alternative? Were there assumptions
made that no longer hold true?

The answers to these questions, and more, can be found
in the rationale for the system. Rationale differs from other
types of documentation because it documents more than
the results of each decision: it documents what the deci-
sions were, what alternatives were considered and rejected,
and what arguments were used in making the alternative
selections. This serves as more than just a snapshot of the
results of the decisions, it provides the intent of the deci-
sion-makers (Sim and Duffy, 1994).

* Corresponding author. Tel.: +1 513 5299760.
E-mail address: burgeje@muohio.edu (J.E. Burge).

0164-1212/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2007.05.004

The rationale can serve as a form of corporate knowl-
edge by providing insight into the history and reasoning
behind the system. This information is especially valuable
during software development. Software often requires
change after delivery to either repair problems or add
new functionality (Bennett and Rajlich, 2000). Problems
with sharing expertise increase as companies outsource
their software development projects and rely on external
consultants in addition to or instead of in-house developers
(Edwards, 2003).

Rationale, often referred to as Design Rationale, has
been studied for many years for a variety of applications
including Engineering Design (Lee, 1997), Human Com-
puter Interaction (Moran and Carroll, 1995), and Software
Development (Dutoit et al., 2006). There seems to be wide-
spread agreement about the importance of rationale but it
is still rarely captured in practice (ASME, 2005). One rea-
son for this is a persistent belief that the cost of capturing
the rationale is high and may not outweigh the benefit of
having the rationale available. To motivate the capture,
and to help determine what types of rationale should be
captured, this work has focused on developing ways that
the rationale can be used.

mailto:burgeje@muohio.edu

396 J.E. Burge, D.C. Brown | The Journal of Systems and Software 81 (2008) 395-413

We have developed the SEURAT (Software Engineering
Using RATionale) system (Burge and Brown, 2004, 2006;
Burge, 2005) to support capture, display and use of the
rationale. SEURAT also inferences over the rationale to
look for potential problems in both the rationale itself
(such as incompleteness or contradictions) and the soft-
ware system (such as poor or inconsistent choices).

In this paper, we will describe the design and implemen-
tation of the SEURAT system and our initial research
results. Section 2 discusses rationale and software develop-
ment. Section 3 provides our approach to using rationale to
support software development. Section 4 describes the
design of the SEURAT system, while Section 5 discusses
its implementation. Section 6 describes how we evaluated
our approach, Section 7 discusses related work, and Sec-
tion 8 gives a summary and some conclusions.

2. Rationale and software development

Much of the early research focus on rationale has been
on Design Rationale—the reasons behind decisions made
when designing. In software development, while there is a
specific phase that is called design, decisions are made
throughout the development process starting with require-
ments and continuing through software maintenance and
until the system is eventually retired.

2.1. Uses of rationale in software maintenance

There are many ways that rationale can be used in soft-
ware maintenance. Rationale can serve as documentation
by capturing knowledge of the original developers for use
by new people joining the team. This is particularly crucial
for software maintenance since the maintainers are often
not the original developers (Charette et al., 1997) and
may not even work for the same company (Levery,
1998). By recording those alternatives considered but not
selected, rationale provides two useful services to the devel-
oper: it indicates which alternative decisions are not good,
and the reasons, and also provides a list of decisions that
were not chosen but that may be worth a second look. This
is information that would have to be painfully recreated by
trial and error if it were not present in the rationale.

Because rationale captures the relationships between
decisions, it can also be used to analyze the impact of design
changes (revisions). The rationale can be used to determine
which upstream and downstream decisions would need to
be revisited if the proposed design change were made. This
impact analysis is very valuable as it provides insight into
how difficult the change is likely to be and by ensuring that
all the affected portions of the design are known so that
they can be changed as needed.

Rationale can also assist in changes needed if the tech-
nology changes. The reasons given in the rationale can be
used to infer where decisions were driven by the technology
available at that time. This information can be used to see
where the system requires modification to exploit new tech-

nology and indicate if decisions rejected previously should
now be reconsidered.

2.2. Encouraging rationale use in software development

Rationale is only useful if the developers actually use it.
If the rationale support tools are integrated into tools
already used by the developers then it might be possible
to present the rationale exactly when it is needed without
extra effort from the developer. For example, if the devel-
oper is viewing source code in the editor they should be
able to know when there is rationale available and be able
to access it without having to bring up an additional tool or
search for it in a repository. Integrated tools can also pro-
vide more active assistance, using the existing rationale to
evaluate current decisions and provide feedback to the
designer.

We have addressed these issues in our approach by inte-
grating our rationale tools into a software development
environment already used by many developers and main-
tainers. In this case, the environment chosen was the
Eclipse Development Framework (www.eclipse.org), a
framework used as the IDE on many Java development
projects.

The developer/maintainer can view, modify, and ana-
lyze the rationale without leaving the development environ-
ment. This supports the need to have the rationale become
an integrated part of the process. The rationale is associ-
ated directly with the source code that implements the deci-
sions. Its presence is indicated to the developer/maintainer
in a non-intrusive manner when the code is viewed/edited.

3. Approach

Crucial decisions are made at many points in the soft-
ware development process. Documentation of these deci-
sions, and the rationale for them, can be very useful in
subsequent development phases and also when developing
new systems with similarities to the current one. The pri-
mary obstacle to decision documentation is that the ratio-
nale is not easy to capture and while there are many
potential uses, the tools and methods are not in place to
support them.

There are many different approaches that have been pro-
posed to assist in the capture of rationale. These include
analyzing the patterns of changes made in a Computer
Aided Design (CAD) tool (Ishino and Jin, 2006), using a
trained facilitator to structure rationale generated during
discussion (Buckingham Shumm et al., 2006), and associat-
ing code with e-mail messages that contain rationale (Zayc-
hik and Regli, 2003). While these techniques have promise,
we feel that in order for rationale to be useful (and worthy
of the effort required to capture it), the key to success is to
find ways in which it can be used. To this end, while our
tools support the capture of rationale, our primary
research emphasis has been on how the rationale can be
used by the software developer.

http://www.eclipse.org

Download English Version:

https://daneshyari.com/en/article/462288

Download Persian Version:

https://daneshyari.com/article/462288

Daneshyari.com

https://daneshyari.com/en/article/462288
https://daneshyari.com/article/462288
https://daneshyari.com

