

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 326 (2007) 1142-1148

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

A functional equation originating from quadratic forms ☆

Jae-Hyeong Bae^a, Won-Gil Park^{b,*}

^a Department of Mathematics and Applied Mathematics, Kyung Hee University, 449-701 Yongin, Republic of Korea ^b National Institute for Mathematical Sciences, 385-16 Doryong, Yuseong-Gu, 305-340 Daejeon, Republic of Korea

> Received 21 February 2006 Available online 27 April 2006 Submitted by William F. Ames

Abstract

In this paper, we obtain the general solution and the stability of the 2-variable quadratic functional equation

f(x + y, z + w) + f(x - y, z - w) = 2f(x, z) + 2f(y, w).

The quadratic form $f(x, y) = ax^2 + bxy + cy^2$ is a solution of the above functional equation. © 2006 Elsevier Inc. All rights reserved.

Keywords: Solution; Stability; 2-Variable quadratic functional equation

1. Introduction

A mapping f is called a *quadratic form* if there exist $a, b, c \in \mathbb{R}$ such that

$$f(x, y) = ax^2 + bxy + cy^2$$

for all $x, y \in X$.

In this paper, let X and Y be real vector spaces. For a mapping $f: X \times X \to Y$, consider the 2-variable quadratic functional equation:

$$f(x + y, z + w) + f(x - y, z - w) = 2f(x, z) + 2f(y, w).$$
(1)

* This work was (partially) supported by the National Institute for Mathematical Sciences.

* Corresponding author.

E-mail addresses: jhbae@khu.ac.kr (J.-H. Bae), wgpark@math.cnu.ac.kr (W.-G. Park).

0022-247X/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.03.023

When $X = Y = \mathbb{R}$, the quadratic form $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $f(x, y) := ax^2 + bxy + cy^2$ is a solution of (1).

For a mapping $g: X \to Y$, consider the quadratic functional equation:

$$g(x+y) + g(x-y) = 2g(x) + 2g(y).$$
(2)

In 1989, J. Aczél [1] solved the solution of Eq. (2). Later, many different quadratic functional equations were solved by numerous authors [2–5].

In this paper, we investigate the relation between (1) and (2). And we find out the general solution and the generalized Hyers–Ulam stability of (1).

2. Results

The 2-variable quadratic functional equation (1) induces the quadratic functional equation (2) as follows.

Theorem 1. Let $f: X \times X \to Y$ be a mapping satisfying (1) and let $g: X \to Y$ be the mapping given by

$$g(x) := f(x, x) \tag{3}$$

for all $x \in X$, then g satisfies (2).

Proof. By (1) and (3),

$$g(x + y) + g(x - y) = f(x + y, x + y) + f(x - y, x - y)$$

= 2f(x, x) + 2f(y, y)
= 2g(x) + 2g(y)

for all $x, y \in X$. \Box

Example 1. Let X be a real algebra and $D: X \to X$ a derivation on X. Define a mapping $f: X \times X \to X$ by

$$f(x, y) := D(xy) = xD(y) + D(x)y$$

for all $x, y \in X$. Then f satisfies (1). Define a mapping $g: X \to X$ by

$$g(x) := D(x^2) = xD(x) + D(x)x$$

for all $x \in X$. Then g satisfies (3). By Theorem 1, g satisfies (2).

The quadratic functional equation (2) induces the 2-variable quadratic functional equation (1) with an additional condition.

Theorem 2. Let $a, b, c \in \mathbb{R}$ and $g: X \to Y$ be a mapping satisfying (2). If $f: X \times X \to Y$ is the mapping given by

$$f(x, y) := ag(x) + \frac{b}{4} [g(x+y) - g(x-y)] + cg(y)$$
(4)

for all $x, y \in X$, then f satisfies (1). Furthermore, (3) holds if a + b + c = 1.

Download English Version:

https://daneshyari.com/en/article/4623501

Download Persian Version:

https://daneshyari.com/article/4623501

Daneshyari.com