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Abstract

In this paper, we obtain the general solution and the stability of the 2-variable quadratic functional equa-
tion

f (x + y, z + w) + f (x − y, z − w) = 2f (x, z) + 2f (y,w).

The quadratic form f (x, y) = ax2 + bxy + cy2 is a solution of the above functional equation.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A mapping f is called a quadratic form if there exist a, b, c ∈ R such that

f (x, y) = ax2 + bxy + cy2

for all x, y ∈ X.
In this paper, let X and Y be real vector spaces. For a mapping f :X × X → Y , consider the

2-variable quadratic functional equation:

f (x + y, z + w) + f (x − y, z − w) = 2f (x, z) + 2f (y,w). (1)
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When X = Y = R, the quadratic form f : R × R → R given by f (x, y) := ax2 + bxy + cy2

is a solution of (1).
For a mapping g :X → Y , consider the quadratic functional equation:

g(x + y) + g(x − y) = 2g(x) + 2g(y). (2)

In 1989, J. Aczél [1] solved the solution of Eq. (2). Later, many different quadratic functional
equations were solved by numerous authors [2–5].

In this paper, we investigate the relation between (1) and (2). And we find out the general
solution and the generalized Hyers–Ulam stability of (1).

2. Results

The 2-variable quadratic functional equation (1) induces the quadratic functional equation (2)
as follows.

Theorem 1. Let f :X × X → Y be a mapping satisfying (1) and let g :X → Y be the mapping
given by

g(x) := f (x, x) (3)

for all x ∈ X, then g satisfies (2).

Proof. By (1) and (3),

g(x + y) + g(x − y) = f (x + y, x + y) + f (x − y, x − y)

= 2f (x, x) + 2f (y, y)

= 2g(x) + 2g(y)

for all x, y ∈ X. �
Example 1. Let X be a real algebra and D :X → X a derivation on X. Define a mapping
f :X × X → X by

f (x, y) := D(xy) = xD(y) + D(x)y

for all x, y ∈ X. Then f satisfies (1). Define a mapping g :X → X by

g(x) := D
(
x2) = xD(x) + D(x)x

for all x ∈ X. Then g satisfies (3). By Theorem 1, g satisfies (2).

The quadratic functional equation (2) induces the 2-variable quadratic functional equation (1)
with an additional condition.

Theorem 2. Let a, b, c ∈ R and g :X → Y be a mapping satisfying (2). If f :X × X → Y is the
mapping given by

f (x, y) := ag(x) + b

4

[
g(x + y) − g(x − y)

] + cg(y) (4)

for all x, y ∈ X, then f satisfies (1). Furthermore, (3) holds if a + b + c = 1.
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