

www.elsevier.com/locate/jmaa

Journal of

MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 326 (2007) 1199-1211

Extended Cesàro operators between Bloch-type spaces in the unit ball of \mathbb{C}^{n}

Xiaomin Tang

Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang 313000, PR China
Received 13 February 2006
Available online 27 April 2006
Submitted by J.A. Ball

Abstract

In this paper, we characterize those holomorphic symbols φ in the unit ball of \mathbb{C}^n for which the induced extended Cesàro operator $T_{\varphi}: \mathcal{B}_{\omega} \to \mathcal{B}_{\mu}$ (respectively, $\mathcal{B}_{\omega,0} \to \mathcal{B}_{\mu,0}$) is bounded or compact, where ω and μ are normal functions on [0,1). In addition, we obtain some properties of those spaces \mathcal{B}_{ω} and $\mathcal{B}_{\omega,0}$. © 2006 Elsevier Inc. All rights reserved.

Keywords: Bloch-type space; Extended Cesàro operator; Unit ball

1. Introduction

Let $\mathbf{B} = \{z \in \mathbf{C}^n; |z| < 1\}$ be the unit ball of \mathbf{C}^n , and let $\partial \mathbf{B} = \{z \in \mathbf{C}^n; |z| = 1\}$ be its boundary. $H(\mathbf{B})$ denotes the family of all holomorphic functions on \mathbf{B} .

A positive continuous function ω on [0,1) is called normal if there are three constants $0 \le \delta < 1$ and $0 < a < b < \infty$ such that

$$\frac{\omega(r)}{(1-r)^a}$$
 is decreasing and $\frac{\omega(r)}{(1-r)^b}$ is increasing on $[\delta, 1)$. (1.1)

Supported by the National Natural Science Foundation of China (No. 10471039), the Natural Science Foundation of Zhejiang Province (No. M103104) and the Natural Science Foundation of Huzhou City (No. 2005YZ02).
E-mail address: txm@hutc.zj.cn.

Given ω we will extend it to **B** by $\omega(z) = \omega(|z|)$. A function $f \in H(\mathbf{B})$ is said to belong to the Bloch-type space \mathcal{B}_{ω} if

$$||f||_{\mathcal{B},\omega} = \sup_{z \in \mathbf{R}} \omega(z) |\nabla f(z)| < \infty;$$

and it is said to belong to the little Bloch-type space $\mathcal{B}_{\omega,0}$ if

$$\lim_{|z| \to 1} \omega(z) |\nabla f(z)| = 0.$$

Here $\nabla f(z) = (\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n})$ is the complex gradient of f. It is easy to check that both \mathcal{B}_{ω} and $\mathcal{B}_{\omega,0}$ are Banach spaces under the norm

$$||f||_{\omega} = |f(0)| + ||f||_{\mathcal{B},\omega},$$

and that $\mathcal{B}_{\omega,0}$ is a closed subspace of \mathcal{B}_{ω} . When $\omega(r) = 1 - r^2$ and $\omega(r) = (1 - r^2)^{1-\alpha}$ with $\alpha \in (0, 1)$, two typical normal weights, the induced spaces \mathcal{B}_{ω} are the Bloch space and Lipschitz type space, respectively. And also, the space $\mathcal{B}_{(1-r^2)\log 1/(1-r^2)}$ is the weighted Bloch space. Let **D** denote the open unit disc in the complex plane **C**. For a holomorphic function f(z) on

D with Taylor expansion $f(z) = \sum_{j=0}^{\infty} a_j z^j$, the Cesàro operator acting on f is

$$C[f](z) = \sum_{j=0}^{+\infty} \left(\frac{1}{j+1} \sum_{k=0}^{j} a_k \right) z^j.$$

It is well know that $C[\cdot]$ acts as a bounded linear operator on various spaces of holomorphic functions, see [1-6], including the Hardy and Bergman spaces. But it is not bounded on the Bloch space (see [5,6]).

A little calculation shows $C[f](z) = \frac{1}{z} \int_0^z f(t) (\log \frac{1}{1-t})' dt$. Hence, on most holomorphic function spaces, $C[\cdot]$ is bounded if and only if the integral operator $f \mapsto \int_0^z f(t)(\log \frac{1}{1-t})' dt$ is bounded. From this point of view it is natural to consider the extended Cesàro operator T_{φ} with holomorphic symbol φ ,

$$T_{\varphi}f(z) = \int_{0}^{z} f(t)\varphi'(t) dt. \tag{1.2}$$

The boundedness and compactness of this operator on Hardy spaces, Bergman spaces, Blochtype spaces and Lipschitz spaces have been studied in [7–9].

For $f \in H(\mathbf{B})$, the radial derivative of f is $\Re f(z) = \sum_{j=1}^n z_j \frac{\partial f(z)}{\partial z_j}$. Given $\varphi \in H(\mathbf{B})$, the operator T_{φ} is defined by

$$T_{\varphi}f(z) = \int_{0}^{1} f(tz)\Re\varphi(tz)\frac{dt}{t}, \quad f \in H(\mathbf{B}), \ z \in \mathbf{B}.$$
 (1.3)

It is trivial that, when n = 1, (1.3) is just (1.2). In the unit ball, Hu [10] got the characterization on φ for which the induced extended Cesàro operator is bounded or compact on \mathcal{B}_{1-r^2} and $\mathcal{B}_{1-r^2,0}$, Xiao [11] obtained the sufficient and necessary conditions on φ such that T_{φ} is bounded or compact on $\mathcal{B}_{(1-r^2)^{\alpha}}$ and $\mathcal{B}_{(1-r^2)^{\alpha},0}$, where $\alpha \in (0,\infty)$ but $\alpha \neq 1$. Stević [12] considered the boundedness of T_{φ} on $\mathcal{B}_{(1-r^2)^{\alpha}}$ with $\alpha \in (0, \infty)$, and Zhang [13] studied the same problems between $\mathcal{B}_{(1-r^2)^p}$ and $\mathcal{B}_{(1-r^2)^q}$ for $0 < p, q < \infty$. And also, Hu discussed the boundedness and

Download English Version:

https://daneshyari.com/en/article/4623506

Download Persian Version:

https://daneshyari.com/article/4623506

Daneshyari.com