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Abstract

In this paper, we characterize those holomorphic symbols ϕ in the unit ball of Cn for which the induced
extended Cesàro operator Tϕ :Bω → Bμ (respectively, Bω,0 → Bμ,0) is bounded or compact, where ω and
μ are normal functions on [0,1). In addition, we obtain some properties of those spaces Bω and Bω,0.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let B = {z ∈ Cn; |z| < 1} be the unit ball of Cn, and let ∂B = {z ∈ Cn; |z| = 1} be its
boundary. H(B) denotes the family of all holomorphic functions on B.

A positive continuous function ω on [0,1) is called normal if there are three constants 0 �
δ < 1 and 0 < a < b < ∞ such that

ω(r)

(1 − r)a
is decreasing and

ω(r)

(1 − r)b
is increasing on [δ,1). (1.1)
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Given ω we will extend it to B by ω(z) = ω(|z|). A function f ∈ H(B) is said to belong to the
Bloch-type space Bω if

‖f ‖B,ω = sup
z∈B

ω(z)
∣∣∇f (z)

∣∣ < ∞;

and it is said to belong to the little Bloch-type space Bω,0 if

lim|z|→1
ω(z)

∣∣∇f (z)
∣∣ = 0.

Here ∇f (z) = (
∂f
∂z1

, . . . ,
∂f
∂zn

) is the complex gradient of f . It is easy to check that both Bω and
Bω,0 are Banach spaces under the norm

‖f ‖ω = ∣∣f (0)
∣∣ + ‖f ‖B,ω,

and that Bω,0 is a closed subspace of Bω. When ω(r) = 1 − r2 and ω(r) = (1 − r2)1−α with
α ∈ (0,1), two typical normal weights, the induced spaces Bω are the Bloch space and Lipschitz
type space, respectively. And also, the space B(1−r2) log 1/(1−r2) is the weighted Bloch space.

Let D denote the open unit disc in the complex plane C. For a holomorphic function f (z) on
D with Taylor expansion f (z) = ∑∞

j=0 aj z
j , the Cesàro operator acting on f is

C[f ](z) =
+∞∑
j=0

(
1

j + 1

j∑
k=0

ak

)
zj .

It is well know that C[·] acts as a bounded linear operator on various spaces of holomorphic
functions, see [1–6], including the Hardy and Bergman spaces. But it is not bounded on the
Bloch space (see [5,6]).

A little calculation shows C[f ](z) = 1
z

∫ z

0 f (t)(log 1
1−t

)′ dt . Hence, on most holomorphic

function spaces, C[·] is bounded if and only if the integral operator f �→ ∫ z

0 f (t)(log 1
1−t

)′ dt

is bounded. From this point of view it is natural to consider the extended Cesàro operator Tϕ

with holomorphic symbol ϕ,

Tϕf (z) =
z∫

0

f (t)ϕ′(t) dt. (1.2)

The boundedness and compactness of this operator on Hardy spaces, Bergman spaces, Bloch-
type spaces and Lipschitz spaces have been studied in [7–9].

For f ∈ H(B), the radial derivative of f is 	f (z) = ∑n
j=1 zj

∂f (z)
∂zj

. Given ϕ ∈ H(B), the
operator Tϕ is defined by

Tϕf (z) =
1∫

0

f (tz)	ϕ(tz)
dt

t
, f ∈ H(B), z ∈ B. (1.3)

It is trivial that, when n = 1, (1.3) is just (1.2). In the unit ball, Hu [10] got the characteriza-
tion on ϕ for which the induced extended Cesàro operator is bounded or compact on B1−r2 and
B1−r2,0, Xiao [11] obtained the sufficient and necessary conditions on ϕ such that Tϕ is bounded
or compact on B(1−r2)α and B(1−r2)α,0, where α ∈ (0,∞) but α 
= 1. Stević [12] considered the
boundedness of Tϕ on B(1−r2)α with α ∈ (0,∞), and Zhang [13] studied the same problems
between B(1−r2)p and B(1−r2)q for 0 < p,q < ∞. And also, Hu discussed the boundedness and
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