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Abstract

Given a function f in the class Lip(α,p) (0 < α � 1, p � 1), Chandra [P. Chandra, Trigonometric ap-
proximation of functions in Lp-norm, J. Math. Anal. Appl. 275 (2002) 13–26] approximated such an f

by using trigonometric polynomials, which are the nth terms of either certain weighted mean or Nörlund
mean transforms of the Fourier series representation for f . He showed that the degree of its approximation
is O(n−α). In this paper we obtain the same degree of approximation for a more general class of lower tri-
angular matrices, and deduce some of the results of [P. Chandra, Trigonometric approximation of functions
in Lp-norm, J. Math. Anal. Appl. 275 (2002) 13–26] as corollaries.
© 2006 Elsevier Inc. All rights reserved.
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Let σn(f ) denote the nth term of the (C,1) transform of the partial sums of the Fourier series
of a 2π -periodic function f . In 1937 Quade [4] proved that, if f ∈ Lip(α,p) for 0 < α � 1,
then ‖f − σn(f )‖p = O(n−α) for either p > 1 and 0 < α � 1 or p = 1 and 0 < α < 1. He
also showed that, if p = α = 1, then ‖f − σn(f )‖1 = O(n−1 log(n + 1)). In a recent paper
Chandra [2] extended the work of Quade and proved the following theorems, where Nn(f ) and
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Rn(f ) denote the nth terms of the Nörlund and weighted mean transforms of the sequences of
partial sums, respectively.

Theorem 1. [2] Let f ∈ Lip(α,p) and let {pn} be a positive sequence such that

(n + 1)pn = O(Pn). (1)

If either

(i) p > 1, 0 < α � 1, and
(ii) {pn} is monotonic, or

(i) p = 1, 0 < α < 1, and
(ii) {pn} is a nondecreasing sequence,

then ∥∥f − Nn(f )
∥∥

p
= O

(
n−α

)
. (2)

Theorem 2. [2] Let f ∈ Lip(α,p) and let {pn} be positive. Suppose that either

(i) p > 1, 0 < α � 1, and

(ii)
n−1∑
k=0

∣∣∣∣Δ
(

Pk

k + 1

)∣∣∣∣ = O

(
Pn

n + 1

)
, or

(i) p = 1, 0 < α < 1 and
(ii) {pn} with (1) is positive and nondecreasing. Then

∥∥f − Rn(f )
∥∥

p
= O

(
n−α

)
. (3)

Theorem 3. [2] Let f ∈ Lip(1,1) and let {pn} be positive, satisfy (1), and be such that

(n + 1)−ηpn is nondecreasing for some η > 0. (4)

Then ∥∥f − Rn(f )
∥∥

1 = O
(
n−1). (5)

In this paper we extend some of the results of Chandra to more general classes of triangular
matrix methods.

For a given f ∈ Lp := Lp[0,2π], p � 1, let

sn(f ) := sn(f ;x) = 1

2
a0 +

n∑
k=1

(ak coskx + bk sin kx) :=
n∑

k=0

uk(f ;x).

The integral modulus of continuity of f is defined by

ωp(δ;f ) := sup
0<|h|�δ

{
1

2π

2π∫
0

∣∣f (x + h) − f (x)
∣∣p dx

}1/p

.
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