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Abstract

Given a function f in the class Lip(e, p) (0 <o <1, p > 1), Chandra [P. Chandra, Trigonometric ap-
proximation of functions in L p-norm, J. Math. Anal. Appl. 275 (2002) 13-26] approximated such an f
by using trigonometric polynomials, which are the nth terms of either certain weighted mean or Norlund
mean transforms of the Fourier series representation for f. He showed that the degree of its approximation
is O(n™%). In this paper we obtain the same degree of approximation for a more general class of lower tri-
angular matrices, and deduce some of the results of [P. Chandra, Trigonometric approximation of functions
in L p-norm, J. Math. Anal. Appl. 275 (2002) 13-26] as corollaries.
© 2006 Elsevier Inc. All rights reserved.
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Let 0, (f) denote the nth term of the (C, 1) transform of the partial sums of the Fourier series
of a 2w -periodic function f. In 1937 Quade [4] proved that, if f € Lip(«, p) for 0 < o < 1,
then || f — 0, (f)llp = O(n™) foreither p>land 0 < <lorp=1and 0 <a < 1. He
also showed that, if p = o =1, then || f — o, (f)Il1 = O(n! log(n + 1)). In a recent paper
Chandra [2] extended the work of Quade and proved the following theorems, where N, (f) and
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R, (f) denote the nth terms of the Norlund and weighted mean transforms of the sequences of
partial sums, respectively.

Theorem 1. [2] Let f € Lip(e, p) and let {p,} be a positive sequence such that
(n+ Dpp = O(Py). ey
If either

i p>1,0<a<1,and
(i) {pn} is monotonic, or

(i) p=1,0<a<1,and
(1) {pn} is a nondecreasing sequence,

then

If = Na(H], = 0(n™). ©)
Theorem 2. [2] Let f € Lip(«, p) and let {p,} be positive. Suppose that either
i p>1,0<a<1,and
Lol o).

(ii) >
k=0
() p=1,0<a<1and
@1i) {pn} with (1) is positive and nondecreasing. Then

|f = Ra(H], = 0(n™). 3)
Theorem 3. [2] Let f € Lip(1, 1) and let {p,} be positive, satisfy (1), and be such that

(n+ 1)""p, is nondecreasing for some n > 0. “4)
Then

|f = Ra(H)];=0(n"). )

In this paper we extend some of the results of Chandra to more general classes of triangular
matrix methods.
Foragiven f € L, :=L,[0,27], p > 1, let

spn(f) i=s,(f;x)= %ao + Z(akcoskx + by sinkx) := Zuk(f;x).

k=1 k=0
The integral modulus of continuity of f is defined by

27 1/p

1
wp@: f)i= sup 1= [[fx+h) = f@)| dx
2
0

0<|h|<8
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