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Abstract

In this paper, we study the best approximation for anisotropic Sobolev and Besov classes in the
Ly (RY) metric by wavelets and obtain some asymptotic estimates of approximation order.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let R, Z, Z,and N be the sets of all real numbers, integers, non-negative integers, and

positive integers, respectively. For r = (r1,ra,...,7rq) € Zi, let D"i f(¢) := % I =
1,...,d, be the generalized derivative of f in the sense of Liouville. Then the anisotropic

Sobolev space L;,(Rd ) (1 < p < 00) is defined as follows:

d
Ly(RY) =17 € Lp(R) |1 £y, = I flp + D[ D f], < o0

j=1
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For k; € N, t; € R, denote by

k.
. u (ki
Ailf(x) = Z(—l)l+k’( l)f(xl,---,xi +lti, ..., xq)
1=0 !
the k;th difference of f at the point x for x; withstep#;,i =1,...,d.

Definition. Let k = (k{, ..., kq) € Z+, r=@1,...,74), ki >ri >0,1 <60 <o0,and 1 <
p < o0o. We say that f € B” Q(Rd) if the function f satisfies the conditions:

(i) feLy(RY,

147 POl 0 ary 176
{fR( \tlJ P) \tjjl} <00, 1<0<oo,

HA,]. FOlp 0
sup,ﬂéo T < 00, =00,

ii v =
@) 1£1,5 e

forj=1,...,d.

By [6], the linear space B’ (Rd ) is a Banach space with the norm

1 g, ke = 1 f1lp + Z 17157 oy

j=1

and it is called anisotropic Besov space. When 6 = oo, B;G (R%) coincides with the Holder—
Nikolski space H ;(Rd). We define

SyL(RY) = {f € Lp(RY): £l ey < 1},
noB(RY) :={f e L,(R): £ 137, gy < 1}
Let v/ () is a univariate /-regular wavelet, i.e., ¥ (-) satisfy
V@O <ema(1+1t))™™, a=0,1,....,I, meN, teR.
The functions
Vin®) =2y (25 - ), jkez,

form an orthogonal basis for L, (R). For convenience, let D(R) denote the set of dyadic
intervals. Each such interval I is of the form [ :=1;; = [j2’k, G+ 1275, Jj. ke Z. We
define

Y=y I=[j275 G+ D27 e D). (1.1)

Thus the basis {{; «} j kez is the same as {{/}ep(r)-

For multivariate function space L>(R%), we can construct multivariate wavelet basis
by taking tensor products of the univariate basis functions. If v is a univariate orthogonal
wavelet and d > 1, then the functions

Vik(®) =V 0 @) Vi @)y = Ctseens ja) €2 k= (ki, ... ka) € Z,
(1.2)
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