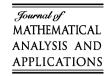


Available online at www.sciencedirect.com

J. Math. Anal. Appl. 318 (2006) 155-174



www.elsevier.com/locate/jmaa

Higher-order spectral analysis and weak asymptotic stability of convex processes

Pedro Gajardo a,1, Alberto Seeger b,*

^a Universidad de Chile, Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Casilla 170/3, Santiago, Chile

^b University of Avignon, Department of Mathematics, 33, rue Louis Pasteur, 84000 Avignon, France

Received 14 January 2005

Available online 16 June 2005

Submitted by H. Frankowska

Abstract

This paper deals with the asymptotic stability analysis of a discrete dynamical inclusion whose right-hand side is a convex process. We provide necessary and sufficient conditions for weak asymptotic stability, and obtain sharp estimates for the asymptotic null-controllability set. These estimates involve not only standard, but also higher-order spectral information on the convex process and its adjoint.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Convex process; Discrete dynamical inclusion; Eigenvalue analysis; Asymptotic stability

1. Introduction

This paper deals with the asymptotic stability analysis of a discrete dynamical system of the form

^{*} Corresponding author.

E-mail addresses: pgajardo@dim.uchile.cl (P. Gajardo), alberto.seeger@univ-avignon.fr (A. Seeger).

Partially supported by CONICYT-Chile postgraduate fellowship program, ECOS-CONICYT and Proyecto MECESUP UCH0009.

$$x(k+1) \in F(x(k)), \quad \forall k = 0, 1, \dots$$

As state space, consider a real Hilbert space H with inner product $\langle \cdot, \cdot \rangle$ and associated norm $\| \cdot \|$. The multivalued operator $F : H \rightrightarrows H$ is assumed to be a convex process in the sense that

$$\operatorname{gr} F = \{(s, v) \in H \times H \colon v \in F(s)\}\$$

is a convex cone containing the origin. This geometric property imposed on the graph of F amounts to saying that

$$0 \in F(0)$$
,

$$F(\alpha s) = \alpha F(s), \quad \forall \alpha > 0, \ \forall s \in H,$$

$$F(s_1) + F(s_2) \subset F(s_1 + s_2), \quad \forall s_1, s_2 \in H.$$

A trajectory of F refers to a sequence $x : \mathbb{N} \to H$ satisfying the evolution law (1). Thus,

$$S_F(\xi) = \{x : \mathbb{N} \to H : x \text{ solves } (1) \text{ and } x(0) = \xi \}$$

corresponds to the set of all trajectories of F emanating from the initial state $\xi \in H$. Observe that the multivalued operator $S_F : H \rightrightarrows H^{\mathbb{N}}$ enjoys the same properties as F, namely, normalization, positive homogeneity, and super-additivity.

Definition 1.1. F is said to be weakly asymptotically stable if

$$\forall \xi \in H$$
, $\exists x \in S_F(\xi)$ such that $\lim_{k \to \infty} x(k) = 0$,

that is to say, from every initial state emanates a trajectory of F that, in the long run, becomes arbitrarily close to the origin.

Weak asymptotic stability is a concept that speaks by itself and does not need any further introduction. Definition 1.1 has been considered by authors like Phat [10,11] and Smirnov [12], among others. The purpose of this note is not only providing necessary and sufficient conditions for weak asymptotic stability, but also deriving sharp estimates for the set

$$\mathcal{K}_{\infty}(F) = \Big\{ \xi \in H \colon \lim_{k \to \infty} x(k) = 0 \text{ for some } x \in S_F(\xi) \Big\}.$$

We say that $\mathcal{K}_{\infty}(F)$ is the *asymptotic null-controllability set* of F. We are borrowing the terminology of control theory because (1) can be seen as a generalization of the control model

$$x(k+1) = Ax(k) + Bu(k), \quad u(k) \in P$$

where P is a closed convex cone in a given Hilbert space, and A and B are continuous linear operators.

Two remarks are useful for putting our study in the right perspective: firstly, $\mathcal{K}_{\infty}(F)$ is a convex cone containing the origin; and, secondly,

$$\mathcal{K}_{\infty}(F) \subset \operatorname{dom} S_F \subset \operatorname{dom} F$$
,

with dom $F = \{ \xi \in H \colon F(\xi) \neq \emptyset \}$ and dom $S_F = \{ \xi \in H \colon S_F(\xi) \neq \emptyset \}$ being the domains of F and S_F , respectively. Needless to say, the convex process F cannot be weakly asymptotically stable unless it is nonempty-valued everywhere.

Download English Version:

https://daneshyari.com/en/article/4623690

Download Persian Version:

https://daneshyari.com/article/4623690

<u>Daneshyari.com</u>